Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
tan(x)
/1\ // 2 \ /1\ tan(x)\
|-| *|\1 + tan (x)/*log|-| - ------|
\x/ \ \x/ x /
$$\left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\frac{1}{x} \right )} - \frac{1}{x} \tan{\left (x \right )}\right) \left(\frac{1}{x}\right)^{\tan{\left (x \right )}}$$
tan(x) / 2 / 2 \ \
/1\ |// 2 \ /1\ tan(x)\ tan(x) 2*\1 + tan (x)/ / 2 \ /1\ |
|-| *||\1 + tan (x)/*log|-| - ------| + ------ - --------------- + 2*\1 + tan (x)/*log|-|*tan(x)|
\x/ |\ \x/ x / 2 x \x/ |
\ x /
$$\left(\left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\frac{1}{x} \right )} - \frac{1}{x} \tan{\left (x \right )}\right)^{2} + 2 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\frac{1}{x} \right )} \tan{\left (x \right )} - \frac{1}{x} \left(2 \tan^{2}{\left (x \right )} + 2\right) + \frac{1}{x^{2}} \tan{\left (x \right )}\right) \left(\frac{1}{x}\right)^{\tan{\left (x \right )}}$$
tan(x) / 3 2 / 2 \ / / 2 \ \ / 2 \ \
/1\ |// 2 \ /1\ tan(x)\ 2*tan(x) / 2 \ /1\ 3*\1 + tan (x)/ // 2 \ /1\ tan(x)\ |tan(x) 2*\1 + tan (x)/ / 2 \ /1\ | 6*\1 + tan (x)/*tan(x) 2 / 2 \ /1\|
|-| *||\1 + tan (x)/*log|-| - ------| - -------- + 2*\1 + tan (x)/ *log|-| + --------------- + 3*|\1 + tan (x)/*log|-| - ------|*|------ - --------------- + 2*\1 + tan (x)/*log|-|*tan(x)| - ---------------------- + 4*tan (x)*\1 + tan (x)/*log|-||
\x/ |\ \x/ x / 3 \x/ 2 \ \x/ x / | 2 x \x/ | x \x/|
\ x x \ x / /
$$\left(\left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\frac{1}{x} \right )} - \frac{1}{x} \tan{\left (x \right )}\right)^{3} + 3 \left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\frac{1}{x} \right )} - \frac{1}{x} \tan{\left (x \right )}\right) \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\frac{1}{x} \right )} \tan{\left (x \right )} - \frac{1}{x} \left(2 \tan^{2}{\left (x \right )} + 2\right) + \frac{1}{x^{2}} \tan{\left (x \right )}\right) + 2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \log{\left (\frac{1}{x} \right )} + 4 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\frac{1}{x} \right )} \tan^{2}{\left (x \right )} - \frac{6}{x} \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \frac{1}{x^{2}} \left(3 \tan^{2}{\left (x \right )} + 3\right) - \frac{2}{x^{3}} \tan{\left (x \right )}\right) \left(\frac{1}{x}\right)^{\tan{\left (x \right )}}$$