Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
tan(x) // 2 \ tan(x) \
(1 - log(x)) *|\1 + tan (x)/*log(1 - log(x)) - --------------|
\ x*(1 - log(x))/
$$\left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (- \log{\left (x \right )} + 1 \right )} - \frac{\tan{\left (x \right )}}{x \left(- \log{\left (x \right )} + 1\right)}\right) \left(- \log{\left (x \right )} + 1\right)^{\tan{\left (x \right )}}$$
/ 2 / 2 \ \
tan(x) |// 2 \ tan(x) \ tan(x) tan(x) 2*\1 + tan (x)/ / 2 \ |
(1 - log(x)) *||\1 + tan (x)/*log(1 - log(x)) + ---------------| - ---------------- - ----------------- + --------------- + 2*\1 + tan (x)/*log(1 - log(x))*tan(x)|
|\ x*(-1 + log(x))/ 2 2 2 x*(-1 + log(x)) |
\ x *(-1 + log(x)) x *(-1 + log(x)) /
$$\left(- \log{\left (x \right )} + 1\right)^{\tan{\left (x \right )}} \left(\left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (- \log{\left (x \right )} + 1 \right )} + \frac{\tan{\left (x \right )}}{x \left(\log{\left (x \right )} - 1\right)}\right)^{2} + 2 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (- \log{\left (x \right )} + 1 \right )} \tan{\left (x \right )} + \frac{2 \tan^{2}{\left (x \right )} + 2}{x \left(\log{\left (x \right )} - 1\right)} - \frac{\tan{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} - 1\right)} - \frac{\tan{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} - 1\right)^{2}}\right)$$
/ 3 2 / / 2 \ \ / 2 \ / 2 \ / 2 \ \
tan(x) |// 2 \ tan(x) \ / 2 \ // 2 \ tan(x) \ | tan(x) tan(x) 2*\1 + tan (x)/ / 2 \ | 3*\1 + tan (x)/ 3*\1 + tan (x)/ 2*tan(x) 2*tan(x) 3*tan(x) 2 / 2 \ 6*\1 + tan (x)/*tan(x)|
(1 - log(x)) *||\1 + tan (x)/*log(1 - log(x)) + ---------------| + 2*\1 + tan (x)/ *log(1 - log(x)) + 3*|\1 + tan (x)/*log(1 - log(x)) + ---------------|*|- ---------------- - ----------------- + --------------- + 2*\1 + tan (x)/*log(1 - log(x))*tan(x)| - ---------------- - ----------------- + ---------------- + ----------------- + ----------------- + 4*tan (x)*\1 + tan (x)/*log(1 - log(x)) + ----------------------|
|\ x*(-1 + log(x))/ \ x*(-1 + log(x))/ | 2 2 2 x*(-1 + log(x)) | 2 2 2 3 3 3 3 2 x*(-1 + log(x)) |
\ \ x *(-1 + log(x)) x *(-1 + log(x)) / x *(-1 + log(x)) x *(-1 + log(x)) x *(-1 + log(x)) x *(-1 + log(x)) x *(-1 + log(x)) /
$$\left(- \log{\left (x \right )} + 1\right)^{\tan{\left (x \right )}} \left(\left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (- \log{\left (x \right )} + 1 \right )} + \frac{\tan{\left (x \right )}}{x \left(\log{\left (x \right )} - 1\right)}\right)^{3} + 3 \left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (- \log{\left (x \right )} + 1 \right )} + \frac{\tan{\left (x \right )}}{x \left(\log{\left (x \right )} - 1\right)}\right) \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (- \log{\left (x \right )} + 1 \right )} \tan{\left (x \right )} + \frac{2 \tan^{2}{\left (x \right )} + 2}{x \left(\log{\left (x \right )} - 1\right)} - \frac{\tan{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} - 1\right)} - \frac{\tan{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} - 1\right)^{2}}\right) + 2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \log{\left (- \log{\left (x \right )} + 1 \right )} + 4 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (- \log{\left (x \right )} + 1 \right )} \tan^{2}{\left (x \right )} + \frac{6 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )}}{x \left(\log{\left (x \right )} - 1\right)} - \frac{3 \tan^{2}{\left (x \right )} + 3}{x^{2} \left(\log{\left (x \right )} - 1\right)} - \frac{3 \tan^{2}{\left (x \right )} + 3}{x^{2} \left(\log{\left (x \right )} - 1\right)^{2}} + \frac{2 \tan{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} - 1\right)} + \frac{3 \tan{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} - 1\right)^{2}} + \frac{2 \tan{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} - 1\right)^{3}}\right)$$