1 + cos(x)
d --(1 + cos(x)) dx
дифференцируем cos(x)+1\cos{\left(x \right)} + 1cos(x)+1 почленно:
Производная постоянной 111 равна нулю.
Производная косинус есть минус синус:
ddxcos(x)=−sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}dxdcos(x)=−sin(x)
В результате: −sin(x)- \sin{\left(x \right)}−sin(x)
Ответ:
−sin(x)- \sin{\left(x \right)}−sin(x)
-sin(x)
-cos(x)
sin(x)