Найти производную y' = f'(x) = (1+log(sin(x)))^n ((1 плюс логарифм от (синус от (х))) в степени n) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная (1+log(sin(x)))^n

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
                 n
(1 + log(sin(x))) 
$$\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right)^{n}$$
Подробное решение
  1. Заменим .

  2. В силу правила, применим: получим

  3. Затем примените цепочку правил. Умножим на :

    1. дифференцируем почленно:

      1. Производная постоянной равна нулю.

      2. Заменим .

      3. Производная является .

      4. Затем примените цепочку правил. Умножим на :

        1. Производная синуса есть косинус:

        В результате последовательности правил:

      В результате:

    В результате последовательности правил:

  4. Теперь упростим:


Ответ:

Первая производная [src]
                   n       
n*(1 + log(sin(x))) *cos(x)
---------------------------
  (1 + log(sin(x)))*sin(x) 
$$\frac{n \left(\log{\left (\sin{\left (x \right )} \right )} + 1\right)^{n} \cos{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right) \sin{\left (x \right )}}$$
Вторая производная [src]
                     /        2                  2                            2           \
                   n |     cos (x)            cos (x)                    n*cos (x)        |
n*(1 + log(sin(x))) *|-1 - ------- - ------------------------- + -------------------------|
                     |        2                           2                           2   |
                     \     sin (x)   (1 + log(sin(x)))*sin (x)   (1 + log(sin(x)))*sin (x)/
-------------------------------------------------------------------------------------------
                                      1 + log(sin(x))                                      
$$\frac{n \left(\log{\left (\sin{\left (x \right )} \right )} + 1\right)^{n}}{\log{\left (\sin{\left (x \right )} \right )} + 1} \left(\frac{n \cos^{2}{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right) \sin^{2}{\left (x \right )}} - 1 - \frac{\cos^{2}{\left (x \right )}}{\sin^{2}{\left (x \right )}} - \frac{\cos^{2}{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right) \sin^{2}{\left (x \right )}}\right)$$
Третья производная [src]
                     /                                             2                   2                            2                       2    2                            2                           2           \       
                   n |           3                3*n         2*cos (x)           2*cos (x)                    3*cos (x)                   n *cos (x)                  3*n*cos (x)                 3*n*cos (x)        |       
n*(1 + log(sin(x))) *|2 + --------------- - --------------- + --------- + -------------------------- + ------------------------- + -------------------------- - ------------------------- - --------------------------|*cos(x)
                     |    1 + log(sin(x))   1 + log(sin(x))       2                        2    2                           2                       2    2                           2                       2    2   |       
                     \                                         sin (x)    (1 + log(sin(x))) *sin (x)   (1 + log(sin(x)))*sin (x)   (1 + log(sin(x))) *sin (x)   (1 + log(sin(x)))*sin (x)   (1 + log(sin(x))) *sin (x)/       
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                   (1 + log(sin(x)))*sin(x)                                                                                                   
$$\frac{n \left(\log{\left (\sin{\left (x \right )} \right )} + 1\right)^{n} \cos{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right) \sin{\left (x \right )}} \left(\frac{n^{2} \cos^{2}{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right)^{2} \sin^{2}{\left (x \right )}} - \frac{3 n}{\log{\left (\sin{\left (x \right )} \right )} + 1} - \frac{3 n \cos^{2}{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right) \sin^{2}{\left (x \right )}} - \frac{3 n \cos^{2}{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right)^{2} \sin^{2}{\left (x \right )}} + 2 + \frac{2 \cos^{2}{\left (x \right )}}{\sin^{2}{\left (x \right )}} + \frac{3}{\log{\left (\sin{\left (x \right )} \right )} + 1} + \frac{3 \cos^{2}{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right) \sin^{2}{\left (x \right )}} + \frac{2 \cos^{2}{\left (x \right )}}{\left(\log{\left (\sin{\left (x \right )} \right )} + 1\right)^{2} \sin^{2}{\left (x \right )}}\right)$$