Подробное решение
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.
Не могу найти шаги в поиске этой производной.
Но производная
Таким образом, в результате:
Ответ:
cos(x) /cos(x) \
5*x *|------ - log(x)*sin(x)|
\ x /
$$5 x^{\cos{\left (x \right )}} \left(- \log{\left (x \right )} \sin{\left (x \right )} + \frac{1}{x} \cos{\left (x \right )}\right)$$
/ 2 \
cos(x) |/ cos(x)\ cos(x) 2*sin(x)|
5*x *||log(x)*sin(x) - ------| - ------ - cos(x)*log(x) - --------|
|\ x / 2 x |
\ x /
$$5 x^{\cos{\left (x \right )}} \left(\left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{2} - \log{\left (x \right )} \cos{\left (x \right )} - \frac{2}{x} \sin{\left (x \right )} - \frac{1}{x^{2}} \cos{\left (x \right )}\right)$$
/ 3 \
cos(x) | / cos(x)\ 3*cos(x) 2*cos(x) 3*sin(x) / cos(x)\ /cos(x) 2*sin(x)\|
5*x *|- |log(x)*sin(x) - ------| + log(x)*sin(x) - -------- + -------- + -------- + 3*|log(x)*sin(x) - ------|*|------ + cos(x)*log(x) + --------||
| \ x / x 3 2 \ x / | 2 x ||
\ x x \ x //
$$5 x^{\cos{\left (x \right )}} \left(- \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} + 3 \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right) \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) + \log{\left (x \right )} \sin{\left (x \right )} - \frac{3}{x} \cos{\left (x \right )} + \frac{3}{x^{2}} \sin{\left (x \right )} + \frac{2}{x^{3}} \cos{\left (x \right )}\right)$$