Подробное решение
Заменим .
Затем примените цепочку правил. Умножим на :
В силу правила, применим: получим
В результате последовательности правил:
Ответ:
/ 3\
\x / 2
3*5 *x *log(5)
$$3 \cdot 5^{x^{3}} x^{2} \log{\left(5 \right)}$$
/ 3\
\x / / 3 \
3*x*5 *\2 + 3*x *log(5)/*log(5)
$$3 \cdot 5^{x^{3}} x \left(3 x^{3} \log{\left(5 \right)} + 2\right) \log{\left(5 \right)}$$
/ 3\
\x / / 6 2 3 \
3*5 *\2 + 9*x *log (5) + 18*x *log(5)/*log(5)
$$3 \cdot 5^{x^{3}} \cdot \left(9 x^{6} \log{\left(5 \right)}^{2} + 18 x^{3} \log{\left(5 \right)} + 2\right) \log{\left(5 \right)}$$