Производная sec(sqrt(tan(x)))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   /  ________\
sec\\/ tan(x) /
sec(tan(x))\sec{\left (\sqrt{\tan{\left (x \right )}} \right )}
Подробное решение
  1. Есть несколько способов вычислить эту производную.

    Один из способов:

    1. Заменим u=tan(x)u = \sqrt{\tan{\left (x \right )}}.

    2. Производная секанса есть секанс, умноженный на тангенс:

      ddusec(u)=tan(u)sec(u)\frac{d}{d u} \sec{\left (u \right )} = \tan{\left (u \right )} \sec{\left (u \right )}

    3. Затем примените цепочку правил. Умножим на ddxtan(x)\frac{d}{d x} \sqrt{\tan{\left (x \right )}}:

      1. Заменим u=tan(x)u = \tan{\left (x \right )}.

      2. В силу правила, применим: u\sqrt{u} получим 12u\frac{1}{2 \sqrt{u}}

      3. Затем примените цепочку правил. Умножим на ddxtan(x)\frac{d}{d x} \tan{\left (x \right )}:

        1. Есть несколько способов вычислить эту производную.

          Один из способов:

          1. ddxtan(x)=1cos2(x)\frac{d}{d x} \tan{\left (x \right )} = \frac{1}{\cos^{2}{\left (x \right )}}

        В результате последовательности правил:

        sin2(x)+cos2(x)2cos2(x)tan(x)\frac{\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}}{2 \cos^{2}{\left (x \right )} \sqrt{\tan{\left (x \right )}}}

      В результате последовательности правил:

      tan(tan(x))sec(tan(x))2cos2(x)tan(x)(sin2(x)+cos2(x))\frac{\tan{\left (\sqrt{\tan{\left (x \right )}} \right )} \sec{\left (\sqrt{\tan{\left (x \right )}} \right )}}{2 \cos^{2}{\left (x \right )} \sqrt{\tan{\left (x \right )}}} \left(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right)

  2. Теперь упростим:

    sin(tan(x))2cos2(x)cos2(tan(x))tan(x)\frac{\sin{\left (\sqrt{\tan{\left (x \right )}} \right )}}{2 \cos^{2}{\left (x \right )} \cos^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )} \sqrt{\tan{\left (x \right )}}}


Ответ:

sin(tan(x))2cos2(x)cos2(tan(x))tan(x)\frac{\sin{\left (\sqrt{\tan{\left (x \right )}} \right )}}{2 \cos^{2}{\left (x \right )} \cos^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )} \sqrt{\tan{\left (x \right )}}}

График
02468-8-6-4-2-1010-20002000
Первая производная [src]
/       2   \                                
|1   tan (x)|    /  ________\    /  ________\
|- + -------|*sec\\/ tan(x) /*tan\\/ tan(x) /
\2      2   /                                
---------------------------------------------
                    ________                 
                  \/ tan(x)                  
sec(tan(x))tan(x)(12tan2(x)+12)tan(tan(x))\frac{\sec{\left (\sqrt{\tan{\left (x \right )}} \right )}}{\sqrt{\tan{\left (x \right )}}} \left(\frac{1}{2} \tan^{2}{\left (x \right )} + \frac{1}{2}\right) \tan{\left (\sqrt{\tan{\left (x \right )}} \right )}
Вторая производная [src]
              /                             /       2   \    /  ________\      2/  ________\ /       2   \   /       2   \ /       2/  ________\\\                
/       2   \ |  ________    /  ________\   \1 + tan (x)/*tan\\/ tan(x) /   tan \\/ tan(x) /*\1 + tan (x)/   \1 + tan (x)/*\1 + tan \\/ tan(x) //|    /  ________\
\1 + tan (x)/*|\/ tan(x) *tan\\/ tan(x) / - ----------------------------- + ------------------------------ + ------------------------------------|*sec\\/ tan(x) /
              |                                           3/2                          4*tan(x)                            4*tan(x)              |                
              \                                      4*tan   (x)                                                                                 /                
(tan2(x)+1)(14tan(x)(tan2(x)+1)(tan2(tan(x))+1)+tan2(tan(x))4tan(x)(tan2(x)+1)tan(tan(x))4tan32(x)(tan2(x)+1)+tan(x)tan(tan(x)))sec(tan(x))\left(\tan^{2}{\left (x \right )} + 1\right) \left(\frac{1}{4 \tan{\left (x \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) \left(\tan^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )} + 1\right) + \frac{\tan^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )}}{4 \tan{\left (x \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) - \frac{\tan{\left (\sqrt{\tan{\left (x \right )}} \right )}}{4 \tan^{\frac{3}{2}}{\left (x \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) + \sqrt{\tan{\left (x \right )}} \tan{\left (\sqrt{\tan{\left (x \right )}} \right )}\right) \sec{\left (\sqrt{\tan{\left (x \right )}} \right )}
Третья производная [src]
              /                                                                                                                         2                                   2                                                                       2                                   2                                  2                                       \                
              |                                   2/  ________\ /       2   \     /       2   \ /       2/  ________\\     /       2   \     2/  ________\     /       2   \  /       2/  ________\\   /       2   \    /  ________\   /       2   \     3/  ________\     /       2   \     /  ________\     /       2   \  /       2/  ________\\    /  ________\|                
/       2   \ |     3/2       /  ________\   3*tan \\/ tan(x) /*\1 + tan (x)/   3*\1 + tan (x)/*\1 + tan \\/ tan(x) //   3*\1 + tan (x)/ *tan \\/ tan(x) /   3*\1 + tan (x)/ *\1 + tan \\/ tan(x) //   \1 + tan (x)/*tan\\/ tan(x) /   \1 + tan (x)/ *tan \\/ tan(x) /   3*\1 + tan (x)/ *tan\\/ tan(x) /   5*\1 + tan (x)/ *\1 + tan \\/ tan(x) //*tan\\/ tan(x) /|    /  ________\
\1 + tan (x)/*|2*tan   (x)*tan\\/ tan(x) / + -------------------------------- + -------------------------------------- - --------------------------------- - --------------------------------------- - ----------------------------- + ------------------------------- + -------------------------------- + -------------------------------------------------------|*sec\\/ tan(x) /
              |                                             2                                     2                                       2                                      2                                  ________                          3/2                               5/2                                            3/2                         |                
              \                                                                                                                      8*tan (x)                              8*tan (x)                           2*\/ tan(x)                      8*tan   (x)                       8*tan   (x)                                    8*tan   (x)                      /                
(tan2(x)+1)(3(tan2(x)+1)28tan2(x)(tan2(tan(x))+1)+5(tan2(x)+1)28tan32(x)(tan2(tan(x))+1)tan(tan(x))3(tan2(x)+1)28tan2(x)tan2(tan(x))+(tan2(x)+1)28tan32(x)tan3(tan(x))+3(tan2(x)+1)28tan52(x)tan(tan(x))+32(tan2(x)+1)(tan2(tan(x))+1)+32(tan2(x)+1)tan2(tan(x))tan(tan(x))2tan(x)(tan2(x)+1)+2tan32(x)tan(tan(x)))sec(tan(x))\left(\tan^{2}{\left (x \right )} + 1\right) \left(- \frac{3 \left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{8 \tan^{2}{\left (x \right )}} \left(\tan^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )} + 1\right) + \frac{5 \left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{8 \tan^{\frac{3}{2}}{\left (x \right )}} \left(\tan^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )} + 1\right) \tan{\left (\sqrt{\tan{\left (x \right )}} \right )} - \frac{3 \left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{8 \tan^{2}{\left (x \right )}} \tan^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )} + \frac{\left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{8 \tan^{\frac{3}{2}}{\left (x \right )}} \tan^{3}{\left (\sqrt{\tan{\left (x \right )}} \right )} + \frac{3 \left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{8 \tan^{\frac{5}{2}}{\left (x \right )}} \tan{\left (\sqrt{\tan{\left (x \right )}} \right )} + \frac{3}{2} \left(\tan^{2}{\left (x \right )} + 1\right) \left(\tan^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )} + 1\right) + \frac{3}{2} \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{2}{\left (\sqrt{\tan{\left (x \right )}} \right )} - \frac{\tan{\left (\sqrt{\tan{\left (x \right )}} \right )}}{2 \sqrt{\tan{\left (x \right )}}} \left(\tan^{2}{\left (x \right )} + 1\right) + 2 \tan^{\frac{3}{2}}{\left (x \right )} \tan{\left (\sqrt{\tan{\left (x \right )}} \right )}\right) \sec{\left (\sqrt{\tan{\left (x \right )}} \right )}