Производная sec(x)/1+tan(x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
sec(x)         
------ + tan(x)
  1            
sec(x) ------ + tan(x) 1
График
02468-8-6-4-2-1010-20002000
Первая производная [src]
       2                   
1 + tan (x) + sec(x)*tan(x)
tan2(x)+tan(x)sec(x)+1\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1
Вторая производная [src]
   2             /       2   \            /       2   \       
tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)
2(tan2(x)+1)tan(x)+(tan2(x)+1)sec(x)+tan2(x)sec(x)2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \left(\tan^{2}{\left (x \right )} + 1\right) \sec{\left (x \right )} + \tan^{2}{\left (x \right )} \sec{\left (x \right )}
Третья производная [src]
               2                                                                           
  /       2   \       3                  2    /       2   \     /       2   \              
2*\1 + tan (x)/  + tan (x)*sec(x) + 4*tan (x)*\1 + tan (x)/ + 5*\1 + tan (x)/*sec(x)*tan(x)
2(tan2(x)+1)2+4(tan2(x)+1)tan2(x)+5(tan2(x)+1)tan(x)sec(x)+tan3(x)sec(x)2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} + 4 \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{2}{\left (x \right )} + 5 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} \sec{\left (x \right )} + \tan^{3}{\left (x \right )} \sec{\left (x \right )}