Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ 2\
\x / / 2 \
(sec(x)) *\x *tan(x) + 2*x*log(sec(x))/
$$\left(x^{2} \tan{\left (x \right )} + 2 x \log{\left (\sec{\left (x \right )} \right )}\right) \sec^{x^{2}}{\left (x \right )}$$
/ 2\
\x / / 2 2 2 / 2 \ \
(sec(x)) *\2*log(sec(x)) + x *(2*log(sec(x)) + x*tan(x)) + x *\1 + tan (x)/ + 4*x*tan(x)/
$$\left(x^{2} \left(x \tan{\left (x \right )} + 2 \log{\left (\sec{\left (x \right )} \right )}\right)^{2} + x^{2} \left(\tan^{2}{\left (x \right )} + 1\right) + 4 x \tan{\left (x \right )} + 2 \log{\left (\sec{\left (x \right )} \right )}\right) \sec^{x^{2}}{\left (x \right )}$$
/ 2\
\x / / 3 3 / 2 \ 2 / 2 \ / 2 / 2 \ \\
(sec(x)) *\6*tan(x) + x *(2*log(sec(x)) + x*tan(x)) + 6*x*\1 + tan (x)/ + 2*x *\1 + tan (x)/*tan(x) + 3*x*(2*log(sec(x)) + x*tan(x))*\2*log(sec(x)) + x *\1 + tan (x)/ + 4*x*tan(x)//
$$\left(x^{3} \left(x \tan{\left (x \right )} + 2 \log{\left (\sec{\left (x \right )} \right )}\right)^{3} + 2 x^{2} \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + 3 x \left(x \tan{\left (x \right )} + 2 \log{\left (\sec{\left (x \right )} \right )}\right) \left(x^{2} \left(\tan^{2}{\left (x \right )} + 1\right) + 4 x \tan{\left (x \right )} + 2 \log{\left (\sec{\left (x \right )} \right )}\right) + 6 x \left(\tan^{2}{\left (x \right )} + 1\right) + 6 \tan{\left (x \right )}\right) \sec^{x^{2}}{\left (x \right )}$$