Производная 7*sin(x)^2

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
     2   
7*sin (x)
7sin2(x)7 \sin^{2}{\left (x \right )}
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим u=sin(x)u = \sin{\left (x \right )}.

    2. В силу правила, применим: u2u^{2} получим 2u2 u

    3. Затем примените цепочку правил. Умножим на ddxsin(x)\frac{d}{d x} \sin{\left (x \right )}:

      1. Производная синуса есть косинус:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left (x \right )} = \cos{\left (x \right )}

      В результате последовательности правил:

      2sin(x)cos(x)2 \sin{\left (x \right )} \cos{\left (x \right )}

    Таким образом, в результате: 14sin(x)cos(x)14 \sin{\left (x \right )} \cos{\left (x \right )}

  2. Теперь упростим:

    7sin(2x)7 \sin{\left (2 x \right )}


Ответ:

7sin(2x)7 \sin{\left (2 x \right )}

График
02468-8-6-4-2-1010-2020
Первая производная [src]
14*cos(x)*sin(x)
14sin(x)cos(x)14 \sin{\left (x \right )} \cos{\left (x \right )}
Вторая производная [src]
   /   2         2   \
14*\cos (x) - sin (x)/
14(sin2(x)+cos2(x))14 \left(- \sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right)
Третья производная [src]
-56*cos(x)*sin(x)
56sin(x)cos(x)- 56 \sin{\left (x \right )} \cos{\left (x \right )}