Найти производную y' = f'(x) = 7*tan(x) (7 умножить на тангенс от (х)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная 7*tan(x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
7*tan(x)
$$7 \tan{\left(x \right)}$$
d           
--(7*tan(x))
dx          
$$\frac{d}{d x} 7 \tan{\left(x \right)}$$
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Перепишем функции, чтобы дифференцировать:

    2. Применим правило производной частного:

      и .

      Чтобы найти :

      1. Производная синуса есть косинус:

      Чтобы найти :

      1. Производная косинус есть минус синус:

      Теперь применим правило производной деления:

    Таким образом, в результате:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
         2   
7 + 7*tan (x)
$$7 \tan^{2}{\left(x \right)} + 7$$
Вторая производная [src]
   /       2   \       
14*\1 + tan (x)/*tan(x)
$$14 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}$$
Третья производная [src]
   /       2   \ /         2   \
14*\1 + tan (x)/*\1 + 3*tan (x)/
$$14 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right)$$
График
Производная 7*tan(x) /media/krcore-image-pods/hash/derivative/7/da/57bab51944f93e20c651ce61444e1.png