Производная 6^cos(2*x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 cos(2*x)
6        
6cos(2x)6^{\cos{\left(2 x \right)}}
d / cos(2*x)\
--\6        /
dx           
ddx6cos(2x)\frac{d}{d x} 6^{\cos{\left(2 x \right)}}
Подробное решение
  1. Заменим u=cos(2x)u = \cos{\left(2 x \right)}.

  2. ddu6u=6ulog(6)\frac{d}{d u} 6^{u} = 6^{u} \log{\left(6 \right)}

  3. Затем примените цепочку правил. Умножим на ddxcos(2x)\frac{d}{d x} \cos{\left(2 x \right)}:

    1. Заменим u=2xu = 2 x.

    2. Производная косинус есть минус синус:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Затем примените цепочку правил. Умножим на ddx2x\frac{d}{d x} 2 x:

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: xx получим 11

        Таким образом, в результате: 22

      В результате последовательности правил:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    В результате последовательности правил:

    26cos(2x)log(6)sin(2x)- 2 \cdot 6^{\cos{\left(2 x \right)}} \log{\left(6 \right)} \sin{\left(2 x \right)}


Ответ:

26cos(2x)log(6)sin(2x)- 2 \cdot 6^{\cos{\left(2 x \right)}} \log{\left(6 \right)} \sin{\left(2 x \right)}

График
02468-8-6-4-2-1010-2020
Первая производная [src]
    cos(2*x)                
-2*6        *log(6)*sin(2*x)
26cos(2x)log(6)sin(2x)- 2 \cdot 6^{\cos{\left(2 x \right)}} \log{\left(6 \right)} \sin{\left(2 x \right)}
Вторая производная [src]
   cos(2*x) /               2            \       
4*6        *\-cos(2*x) + sin (2*x)*log(6)/*log(6)
46cos(2x)(log(6)sin2(2x)cos(2x))log(6)4 \cdot 6^{\cos{\left(2 x \right)}} \left(\log{\left(6 \right)} \sin^{2}{\left(2 x \right)} - \cos{\left(2 x \right)}\right) \log{\left(6 \right)}
Третья производная [src]
   cos(2*x) /       2       2                         \                
8*6        *\1 - log (6)*sin (2*x) + 3*cos(2*x)*log(6)/*log(6)*sin(2*x)
86cos(2x)(log(6)2sin2(2x)+3log(6)cos(2x)+1)log(6)sin(2x)8 \cdot 6^{\cos{\left(2 x \right)}} \left(- \log{\left(6 \right)}^{2} \sin^{2}{\left(2 x \right)} + 3 \log{\left(6 \right)} \cos{\left(2 x \right)} + 1\right) \log{\left(6 \right)} \sin{\left(2 x \right)}
График
Производная 6^cos(2*x) /media/krcore-image-pods/hash/derivative/d/3d/9e69804aa6b7c77be01ea39720b63.png