Производная sin(4*x)^3

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   3     
sin (4*x)
sin3(4x)\sin^{3}{\left(4 x \right)}
d /   3     \
--\sin (4*x)/
dx           
ddxsin3(4x)\frac{d}{d x} \sin^{3}{\left(4 x \right)}
Подробное решение
  1. Заменим u=sin(4x)u = \sin{\left(4 x \right)}.

  2. В силу правила, применим: u3u^{3} получим 3u23 u^{2}

  3. Затем примените цепочку правил. Умножим на ddxsin(4x)\frac{d}{d x} \sin{\left(4 x \right)}:

    1. Заменим u=4xu = 4 x.

    2. Производная синуса есть косинус:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Затем примените цепочку правил. Умножим на ddx4x\frac{d}{d x} 4 x:

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: xx получим 11

        Таким образом, в результате: 44

      В результате последовательности правил:

      4cos(4x)4 \cos{\left(4 x \right)}

    В результате последовательности правил:

    12sin2(4x)cos(4x)12 \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)}


Ответ:

12sin2(4x)cos(4x)12 \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)}

График
02468-8-6-4-2-1010-1010
Первая производная [src]
      2              
12*sin (4*x)*cos(4*x)
12sin2(4x)cos(4x)12 \sin^{2}{\left(4 x \right)} \cos{\left(4 x \right)}
Вторая производная [src]
   /     2             2     \         
48*\- sin (4*x) + 2*cos (4*x)/*sin(4*x)
48(sin2(4x)+2cos2(4x))sin(4x)48 \left(- \sin^{2}{\left(4 x \right)} + 2 \cos^{2}{\left(4 x \right)}\right) \sin{\left(4 x \right)}
Третья производная [src]
    /       2             2     \         
192*\- 7*sin (4*x) + 2*cos (4*x)/*cos(4*x)
192(7sin2(4x)+2cos2(4x))cos(4x)192 \left(- 7 \sin^{2}{\left(4 x \right)} + 2 \cos^{2}{\left(4 x \right)}\right) \cos{\left(4 x \right)}
График
Производная sin(4*x)^3 /media/krcore-image-pods/hash/derivative/2/d4/451597f6432433f5cb7851e0a13f0.png