/pi\ sin|--| \8 /
d / /pi\\ --|sin|--|| dx\ \8 //
Заменим u=π8u = \frac{\pi}{8}u=8π.
Производная синуса есть косинус:
ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}dudsin(u)=cos(u)
Затем примените цепочку правил. Умножим на ddxπ8\frac{d}{d x} \frac{\pi}{8}dxd8π:
Производная постоянной π8\frac{\pi}{8}8π равна нулю.
В результате последовательности правил:
000
Ответ:
0