2*cos(2*asin(x))
----------------
________
/ 2
\/ 1 - x
$$\frac{2}{\sqrt{- x^{2} + 1}} \cos{\left (2 \operatorname{asin}{\left (x \right )} \right )}$$
/2*sin(2*asin(x)) x*cos(2*asin(x))\
2*|---------------- + ----------------|
| 2 3/2 |
| -1 + x / 2\ |
\ \1 - x / /
$$2 \left(\frac{x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} \cos{\left (2 \operatorname{asin}{\left (x \right )} \right )} + \frac{2}{x^{2} - 1} \sin{\left (2 \operatorname{asin}{\left (x \right )} \right )}\right)$$
/ 2 \
| cos(2*asin(x)) x *cos(2*asin(x)) 2*x*sin(2*asin(x))|
6*|- -------------- + ----------------- - ------------------|
| 3/2 5/2 2 |
| / 2\ / 2\ / 2\ |
\ \1 - x / \1 - x / \-1 + x / /
$$6 \left(\frac{x^{2}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} \cos{\left (2 \operatorname{asin}{\left (x \right )} \right )} - \frac{2 x}{\left(x^{2} - 1\right)^{2}} \sin{\left (2 \operatorname{asin}{\left (x \right )} \right )} - \frac{\cos{\left (2 \operatorname{asin}{\left (x \right )} \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}\right)$$