cos(x) sin (E)
Заменим u=cos(x)u = \cos{\left (x \right )}u=cos(x).
ddusinu(e)=log(sin(e))sinu(e)\frac{d}{d u} \sin^{u}{\left (e \right )} = \log{\left (\sin{\left (e \right )} \right )} \sin^{u}{\left (e \right )}dudsinu(e)=log(sin(e))sinu(e)
Затем примените цепочку правил. Умножим на ddxcos(x)\frac{d}{d x} \cos{\left (x \right )}dxdcos(x):
Производная косинус есть минус синус:
ddxcos(x)=−sin(x)\frac{d}{d x} \cos{\left (x \right )} = - \sin{\left (x \right )}dxdcos(x)=−sin(x)
В результате последовательности правил:
−log(sin(e))sincos(x)(e)sin(x)- \log{\left (\sin{\left (e \right )} \right )} \sin^{\cos{\left (x \right )}}{\left (e \right )} \sin{\left (x \right )}−log(sin(e))sincos(x)(e)sin(x)
Ответ:
cos(x) -sin (E)*log(sin(E))*sin(x)
cos(x) / 2 \ sin (E)*\-cos(x) + sin (x)*log(sin(E))/*log(sin(E))
cos(x) / 2 2 \ sin (E)*\1 - log (sin(E))*sin (x) + 3*cos(x)*log(sin(E))/*log(sin(E))*sin(x)