Производная sin(cos(cot(x)))^(2)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   2             
sin (cos(cot(x)))
sin2(cos(cot(x)))\sin^{2}{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )}
Подробное решение
  1. Заменим u=sin(cos(cot(x)))u = \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )}.

  2. В силу правила, применим: u2u^{2} получим 2u2 u

  3. Затем примените цепочку правил. Умножим на ddxsin(cos(cot(x)))\frac{d}{d x} \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )}:

    1. Заменим u=cos(cot(x))u = \cos{\left (\cot{\left (x \right )} \right )}.

    2. Производная синуса есть косинус:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left (u \right )} = \cos{\left (u \right )}

    3. Затем примените цепочку правил. Умножим на ddxcos(cot(x))\frac{d}{d x} \cos{\left (\cot{\left (x \right )} \right )}:

      1. Заменим u=cot(x)u = \cot{\left (x \right )}.

      2. Производная косинус есть минус синус:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left (u \right )} = - \sin{\left (u \right )}

      3. Затем примените цепочку правил. Умножим на ddxcot(x)\frac{d}{d x} \cot{\left (x \right )}:

        1. Есть несколько способов вычислить эту производную.

          Один из способов:

          1. ddxcot(x)=1sin2(x)\frac{d}{d x} \cot{\left (x \right )} = - \frac{1}{\sin^{2}{\left (x \right )}}

        В результате последовательности правил:

        (sin2(x)+cos2(x))sin(cot(x))cos2(x)tan2(x)\frac{\left(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right) \sin{\left (\cot{\left (x \right )} \right )}}{\cos^{2}{\left (x \right )} \tan^{2}{\left (x \right )}}

      В результате последовательности правил:

      cos(cos(cot(x)))cos2(x)tan2(x)(sin2(x)+cos2(x))sin(cot(x))\frac{\cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )}}{\cos^{2}{\left (x \right )} \tan^{2}{\left (x \right )}} \left(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right) \sin{\left (\cot{\left (x \right )} \right )}

    В результате последовательности правил:

    2cos(cos(cot(x)))cos2(x)tan2(x)(sin2(x)+cos2(x))sin(cos(cot(x)))sin(cot(x))\frac{2 \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )}}{\cos^{2}{\left (x \right )} \tan^{2}{\left (x \right )}} \left(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right) \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin{\left (\cot{\left (x \right )} \right )}

  4. Теперь упростим:

    2sin(1tan(x))sin2(x)sin(cos(1tan(x)))cos(cos(1tan(x)))\frac{2 \sin{\left (\frac{1}{\tan{\left (x \right )}} \right )}}{\sin^{2}{\left (x \right )}} \sin{\left (\cos{\left (\frac{1}{\tan{\left (x \right )}} \right )} \right )} \cos{\left (\cos{\left (\frac{1}{\tan{\left (x \right )}} \right )} \right )}


Ответ:

2sin(1tan(x))sin2(x)sin(cos(1tan(x)))cos(cos(1tan(x)))\frac{2 \sin{\left (\frac{1}{\tan{\left (x \right )}} \right )}}{\sin^{2}{\left (x \right )}} \sin{\left (\cos{\left (\frac{1}{\tan{\left (x \right )}} \right )} \right )} \cos{\left (\cos{\left (\frac{1}{\tan{\left (x \right )}} \right )} \right )}

График
02468-8-6-4-2-1010-20002000
Первая производная [src]
   /        2   \                                              
-2*\-1 - cot (x)/*cos(cos(cot(x)))*sin(cos(cot(x)))*sin(cot(x))
2(cot2(x)1)sin(cos(cot(x)))sin(cot(x))cos(cos(cot(x)))- 2 \left(- \cot^{2}{\left (x \right )} - 1\right) \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin{\left (\cot{\left (x \right )} \right )} \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )}
Вторая производная [src]
  /       2   \ /   2                 2         /       2   \      2                 2         /       2   \   /       2   \                                                                                                       \
2*\1 + cot (x)/*\cos (cos(cot(x)))*sin (cot(x))*\1 + cot (x)/ - sin (cos(cot(x)))*sin (cot(x))*\1 + cot (x)/ - \1 + cot (x)/*cos(cos(cot(x)))*cos(cot(x))*sin(cos(cot(x))) - 2*cos(cos(cot(x)))*cot(x)*sin(cos(cot(x)))*sin(cot(x))/
2(cot2(x)+1)((cot2(x)+1)sin2(cos(cot(x)))sin2(cot(x))(cot2(x)+1)sin(cos(cot(x)))cos(cos(cot(x)))cos(cot(x))+(cot2(x)+1)sin2(cot(x))cos2(cos(cot(x)))2sin(cos(cot(x)))sin(cot(x))cos(cos(cot(x)))cot(x))2 \left(\cot^{2}{\left (x \right )} + 1\right) \left(- \left(\cot^{2}{\left (x \right )} + 1\right) \sin^{2}{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin^{2}{\left (\cot{\left (x \right )} \right )} - \left(\cot^{2}{\left (x \right )} + 1\right) \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \cos{\left (\cot{\left (x \right )} \right )} + \left(\cot^{2}{\left (x \right )} + 1\right) \sin^{2}{\left (\cot{\left (x \right )} \right )} \cos^{2}{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} - 2 \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin{\left (\cot{\left (x \right )} \right )} \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \cot{\left (x \right )}\right)
Третья производная [src]
                /               2                                                                                                                        2                                                                 2                                                                                                                            2                                                                                                                                                                                                                                   \
  /       2   \ |  /       2   \                                                       2                 2         /       2   \            /       2   \     3                                               /       2   \     2                                          /       2   \                                                   /       2   \     2                                             2                                                         2                 2         /       2   \            /       2   \                                                     |
2*\1 + cot (x)/*\- \1 + cot (x)/ *cos(cos(cot(x)))*sin(cos(cot(x)))*sin(cot(x)) - 6*cos (cos(cot(x)))*sin (cot(x))*\1 + cot (x)/*cot(x) - 4*\1 + cot (x)/ *sin (cot(x))*cos(cos(cot(x)))*sin(cos(cot(x))) - 3*\1 + cot (x)/ *cos (cos(cot(x)))*cos(cot(x))*sin(cot(x)) + 2*\1 + cot (x)/*cos(cos(cot(x)))*sin(cos(cot(x)))*sin(cot(x)) + 3*\1 + cot (x)/ *sin (cos(cot(x)))*cos(cot(x))*sin(cot(x)) + 4*cot (x)*cos(cos(cot(x)))*sin(cos(cot(x)))*sin(cot(x)) + 6*sin (cos(cot(x)))*sin (cot(x))*\1 + cot (x)/*cot(x) + 6*\1 + cot (x)/*cos(cos(cot(x)))*cos(cot(x))*cot(x)*sin(cos(cot(x)))/
2(cot2(x)+1)(3(cot2(x)+1)2sin2(cos(cot(x)))sin(cot(x))cos(cot(x))4(cot2(x)+1)2sin(cos(cot(x)))sin3(cot(x))cos(cos(cot(x)))(cot2(x)+1)2sin(cos(cot(x)))sin(cot(x))cos(cos(cot(x)))3(cot2(x)+1)2sin(cot(x))cos2(cos(cot(x)))cos(cot(x))+6(cot2(x)+1)sin2(cos(cot(x)))sin2(cot(x))cot(x)+2(cot2(x)+1)sin(cos(cot(x)))sin(cot(x))cos(cos(cot(x)))+6(cot2(x)+1)sin(cos(cot(x)))cos(cos(cot(x)))cos(cot(x))cot(x)6(cot2(x)+1)sin2(cot(x))cos2(cos(cot(x)))cot(x)+4sin(cos(cot(x)))sin(cot(x))cos(cos(cot(x)))cot2(x))2 \left(\cot^{2}{\left (x \right )} + 1\right) \left(3 \left(\cot^{2}{\left (x \right )} + 1\right)^{2} \sin^{2}{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin{\left (\cot{\left (x \right )} \right )} \cos{\left (\cot{\left (x \right )} \right )} - 4 \left(\cot^{2}{\left (x \right )} + 1\right)^{2} \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin^{3}{\left (\cot{\left (x \right )} \right )} \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} - \left(\cot^{2}{\left (x \right )} + 1\right)^{2} \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin{\left (\cot{\left (x \right )} \right )} \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} - 3 \left(\cot^{2}{\left (x \right )} + 1\right)^{2} \sin{\left (\cot{\left (x \right )} \right )} \cos^{2}{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \cos{\left (\cot{\left (x \right )} \right )} + 6 \left(\cot^{2}{\left (x \right )} + 1\right) \sin^{2}{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin^{2}{\left (\cot{\left (x \right )} \right )} \cot{\left (x \right )} + 2 \left(\cot^{2}{\left (x \right )} + 1\right) \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin{\left (\cot{\left (x \right )} \right )} \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} + 6 \left(\cot^{2}{\left (x \right )} + 1\right) \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \cos{\left (\cot{\left (x \right )} \right )} \cot{\left (x \right )} - 6 \left(\cot^{2}{\left (x \right )} + 1\right) \sin^{2}{\left (\cot{\left (x \right )} \right )} \cos^{2}{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \cot{\left (x \right )} + 4 \sin{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \sin{\left (\cot{\left (x \right )} \right )} \cos{\left (\cos{\left (\cot{\left (x \right )} \right )} \right )} \cot^{2}{\left (x \right )}\right)