Производная sin(sqrt(x))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   /  ___\
sin\\/ x /
sin(x)\sin{\left(\sqrt{x} \right)}
d /   /  ___\\
--\sin\\/ x //
dx            
ddxsin(x)\frac{d}{d x} \sin{\left(\sqrt{x} \right)}
Подробное решение
  1. Заменим u=xu = \sqrt{x}.

  2. Производная синуса есть косинус:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Затем примените цепочку правил. Умножим на ddxx\frac{d}{d x} \sqrt{x}:

    1. В силу правила, применим: x\sqrt{x} получим 12x\frac{1}{2 \sqrt{x}}

    В результате последовательности правил:

    cos(x)2x\frac{\cos{\left(\sqrt{x} \right)}}{2 \sqrt{x}}


Ответ:

cos(x)2x\frac{\cos{\left(\sqrt{x} \right)}}{2 \sqrt{x}}

График
02468-8-6-4-2-10102-2
Первая производная [src]
   /  ___\
cos\\/ x /
----------
     ___  
 2*\/ x   
cos(x)2x\frac{\cos{\left(\sqrt{x} \right)}}{2 \sqrt{x}}
Вторая производная [src]
 /   /  ___\      /  ___\\ 
 |sin\\/ x /   cos\\/ x /| 
-|---------- + ----------| 
 |    x            3/2   | 
 \                x      / 
---------------------------
             4             
sin(x)x+cos(x)x324- \frac{\frac{\sin{\left(\sqrt{x} \right)}}{x} + \frac{\cos{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}}}}{4}
Третья производная [src]
     /  ___\        /  ___\        /  ___\
  cos\\/ x /   3*sin\\/ x /   3*cos\\/ x /
- ---------- + ------------ + ------------
      3/2            2             5/2    
     x              x             x       
------------------------------------------
                    8                     
3sin(x)x2cos(x)x32+3cos(x)x528\frac{\frac{3 \sin{\left(\sqrt{x} \right)}}{x^{2}} - \frac{\cos{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}}} + \frac{3 \cos{\left(\sqrt{x} \right)}}{x^{\frac{5}{2}}}}{8}
График
Производная sin(sqrt(x)) /media/krcore-image-pods/hash/derivative/f/f9/494746709185e0562e26e0a33a0c6.png