x sin (5)
d / x \ --\sin (5)/ dx
ddxsinx(5)=(log(−sin(5))+iπ)sinx(5)\frac{d}{d x} \sin^{x}{\left(5 \right)} = \left(\log{\left(- \sin{\left(5 \right)} \right)} + i \pi\right) \sin^{x}{\left(5 \right)}dxdsinx(5)=(log(−sin(5))+iπ)sinx(5)
Ответ:
(log(−sin(5))+iπ)sinx(5)\left(\log{\left(- \sin{\left(5 \right)} \right)} + i \pi\right) \sin^{x}{\left(5 \right)}(log(−sin(5))+iπ)sinx(5)
x sin (5)*(pi*I + log(-sin(5)))
2 x (pi*I + log(-sin(5))) *sin (5)
3 x (pi*I + log(-sin(5))) *sin (5)