Производная sin(x-3)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
sin(x - 3)
sin(x3)\sin{\left(x - 3 \right)}
d             
--(sin(x - 3))
dx            
ddxsin(x3)\frac{d}{d x} \sin{\left(x - 3 \right)}
Подробное решение
  1. Заменим u=x3u = x - 3.

  2. Производная синуса есть косинус:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Затем примените цепочку правил. Умножим на ddx(x3)\frac{d}{d x} \left(x - 3\right):

    1. дифференцируем x3x - 3 почленно:

      1. В силу правила, применим: xx получим 11

      2. Производная постоянной (1)3\left(-1\right) 3 равна нулю.

      В результате: 11

    В результате последовательности правил:

    cos(x3)\cos{\left(x - 3 \right)}

  4. Теперь упростим:

    cos(x3)\cos{\left(x - 3 \right)}


Ответ:

cos(x3)\cos{\left(x - 3 \right)}

График
02468-8-6-4-2-10102-2
Первая производная [src]
cos(x - 3)
cos(x3)\cos{\left(x - 3 \right)}
Вторая производная [src]
-sin(-3 + x)
sin(x3)- \sin{\left(x - 3 \right)}
Третья производная [src]
-cos(-3 + x)
cos(x3)- \cos{\left(x - 3 \right)}
График
Производная sin(x-3) /media/krcore-image-pods/hash/derivative/7/7d/639a02f7bd47000c1a0a56472aa02.png