sin(x)
----------- + asin(x)*cos(x)
________
/ 2
\/ 1 - x
$$\cos{\left(x \right)} \operatorname{asin}{\left(x \right)} + \frac{\sin{\left(x \right)}}{\sqrt{1 - x^{2}}}$$
2*cos(x) x*sin(x)
-asin(x)*sin(x) + ----------- + -----------
________ 3/2
/ 2 / 2\
\/ 1 - x \1 - x /
$$\frac{x \sin{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \sin{\left(x \right)} \operatorname{asin}{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{\sqrt{1 - x^{2}}}$$
/ 2 \
| 3*x |
|-1 + -------|*sin(x)
| 2|
3*sin(x) \ -1 + x / 3*x*cos(x)
-asin(x)*cos(x) - ----------- - --------------------- + -----------
________ 3/2 3/2
/ 2 / 2\ / 2\
\/ 1 - x \1 - x / \1 - x /
$$\frac{3 x \cos{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \cos{\left(x \right)} \operatorname{asin}{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{\sqrt{1 - x^{2}}} - \frac{\left(\frac{3 x^{2}}{x^{2} - 1} - 1\right) \sin{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}}$$