Подробное решение
Заменим .
Производная синуса есть косинус:
Затем примените цепочку правил. Умножим на :
Не могу найти шаги в поиске этой производной.
Но производная
В результате последовательности правил:
Ответ:
atan(x) /atan(x) log(x)\ / atan(x)\
x *|------- + ------|*cos\x /
| x 2|
\ 1 + x /
$$x^{\operatorname{atan}{\left(x \right)}} \left(\frac{\log{\left(x \right)}}{x^{2} + 1} + \frac{\operatorname{atan}{\left(x \right)}}{x}\right) \cos{\left(x^{\operatorname{atan}{\left(x \right)}} \right)}$$
/ 2 2 \
atan(x) |/atan(x) log(x)\ / atan(x)\ /atan(x) 2 2*x*log(x)\ / atan(x)\ atan(x) /atan(x) log(x)\ / atan(x)\|
x *||------- + ------| *cos\x / - |------- - ---------- + ----------|*cos\x / - x *|------- + ------| *sin\x /|
|| x 2| | 2 / 2\ 2 | | x 2| |
|\ 1 + x / | x x*\1 + x / / 2\ | \ 1 + x / |
\ \ \1 + x / / /
$$x^{\operatorname{atan}{\left(x \right)}} \left(- x^{\operatorname{atan}{\left(x \right)}} \left(\frac{\log{\left(x \right)}}{x^{2} + 1} + \frac{\operatorname{atan}{\left(x \right)}}{x}\right)^{2} \sin{\left(x^{\operatorname{atan}{\left(x \right)}} \right)} + \left(\frac{\log{\left(x \right)}}{x^{2} + 1} + \frac{\operatorname{atan}{\left(x \right)}}{x}\right)^{2} \cos{\left(x^{\operatorname{atan}{\left(x \right)}} \right)} - \left(\frac{2 x \log{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} - \frac{2}{x \left(x^{2} + 1\right)} + \frac{\operatorname{atan}{\left(x \right)}}{x^{2}}\right) \cos{\left(x^{\operatorname{atan}{\left(x \right)}} \right)}\right)$$
/ 3 / 2 \ 3 3 \
atan(x) |/atan(x) log(x)\ / atan(x)\ | 6 2*atan(x) 2*log(x) 3 8*x *log(x)| / atan(x)\ 2*atan(x) /atan(x) log(x)\ / atan(x)\ atan(x) /atan(x) log(x)\ / atan(x)\ /atan(x) log(x)\ /atan(x) 2 2*x*log(x)\ / atan(x)\ atan(x) /atan(x) log(x)\ /atan(x) 2 2*x*log(x)\ / atan(x)\|
x *||------- + ------| *cos\x / - |--------- - --------- + --------- + ----------- - -----------|*cos\x / - x *|------- + ------| *cos\x / - 3*x *|------- + ------| *sin\x / - 3*|------- + ------|*|------- - ---------- + ----------|*cos\x / + 3*x *|------- + ------|*|------- - ---------- + ----------|*sin\x /|
|| x 2| | 2 3 2 2 / 2\ 3 | | x 2| | x 2| | x 2| | 2 / 2\ 2 | | x 2| | 2 / 2\ 2 | |
|\ 1 + x / |/ 2\ x / 2\ x *\1 + x / / 2\ | \ 1 + x / \ 1 + x / \ 1 + x / | x x*\1 + x / / 2\ | \ 1 + x / | x x*\1 + x / / 2\ | |
\ \\1 + x / \1 + x / \1 + x / / \ \1 + x / / \ \1 + x / / /
$$x^{\operatorname{atan}{\left(x \right)}} \left(- x^{2 \operatorname{atan}{\left(x \right)}} \left(\frac{\log{\left(x \right)}}{x^{2} + 1} + \frac{\operatorname{atan}{\left(x \right)}}{x}\right)^{3} \cos{\left(x^{\operatorname{atan}{\left(x \right)}} \right)} - 3 x^{\operatorname{atan}{\left(x \right)}} \left(\frac{\log{\left(x \right)}}{x^{2} + 1} + \frac{\operatorname{atan}{\left(x \right)}}{x}\right)^{3} \sin{\left(x^{\operatorname{atan}{\left(x \right)}} \right)} + 3 x^{\operatorname{atan}{\left(x \right)}} \left(\frac{\log{\left(x \right)}}{x^{2} + 1} + \frac{\operatorname{atan}{\left(x \right)}}{x}\right) \left(\frac{2 x \log{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} - \frac{2}{x \left(x^{2} + 1\right)} + \frac{\operatorname{atan}{\left(x \right)}}{x^{2}}\right) \sin{\left(x^{\operatorname{atan}{\left(x \right)}} \right)} + \left(\frac{\log{\left(x \right)}}{x^{2} + 1} + \frac{\operatorname{atan}{\left(x \right)}}{x}\right)^{3} \cos{\left(x^{\operatorname{atan}{\left(x \right)}} \right)} - 3 \left(\frac{\log{\left(x \right)}}{x^{2} + 1} + \frac{\operatorname{atan}{\left(x \right)}}{x}\right) \left(\frac{2 x \log{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} - \frac{2}{x \left(x^{2} + 1\right)} + \frac{\operatorname{atan}{\left(x \right)}}{x^{2}}\right) \cos{\left(x^{\operatorname{atan}{\left(x \right)}} \right)} - \left(- \frac{8 x^{2} \log{\left(x \right)}}{\left(x^{2} + 1\right)^{3}} + \frac{2 \log{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} + \frac{6}{\left(x^{2} + 1\right)^{2}} + \frac{3}{x^{2} \left(x^{2} + 1\right)} - \frac{2 \operatorname{atan}{\left(x \right)}}{x^{3}}\right) \cos{\left(x^{\operatorname{atan}{\left(x \right)}} \right)}\right)$$