Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
2 - tan(x) // 2 \ (2 - tan(x))*cos(x)\
sin (x)*|\-1 - tan (x)/*log(sin(x)) + -------------------|
\ sin(x) /
$$\left(\frac{\cos{\left (x \right )}}{\sin{\left (x \right )}} \left(- \tan{\left (x \right )} + 2\right) + \left(- \tan^{2}{\left (x \right )} - 1\right) \log{\left (\sin{\left (x \right )} \right )}\right) \sin^{- \tan{\left (x \right )} + 2}{\left (x \right )}$$
/ 2 2 / 2 \ \
2 - tan(x) | // 2 \ (-2 + tan(x))*cos(x)\ cos (x)*(-2 + tan(x)) 2*\1 + tan (x)/*cos(x) / 2 \ |
sin (x)*|-2 + |\1 + tan (x)/*log(sin(x)) + --------------------| + --------------------- - ---------------------- - 2*\1 + tan (x)/*log(sin(x))*tan(x) + tan(x)|
| \ sin(x) / 2 sin(x) |
\ sin (x) /
$$\left(\left(\frac{\cos{\left (x \right )}}{\sin{\left (x \right )}} \left(\tan{\left (x \right )} - 2\right) + \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\sin{\left (x \right )} \right )}\right)^{2} + \frac{\cos^{2}{\left (x \right )}}{\sin^{2}{\left (x \right )}} \left(\tan{\left (x \right )} - 2\right) - 2 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\sin{\left (x \right )} \right )} \tan{\left (x \right )} - \frac{2 \cos{\left (x \right )}}{\sin{\left (x \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) + \tan{\left (x \right )} - 2\right) \sin^{- \tan{\left (x \right )} + 2}{\left (x \right )}$$
/ 3 2 / 2 / 2 \ \ 3 2 / 2 \ / 2 \ \
2 - tan(x) | // 2 \ (-2 + tan(x))*cos(x)\ 2 / 2 \ // 2 \ (-2 + tan(x))*cos(x)\ | cos (x)*(-2 + tan(x)) 2*\1 + tan (x)/*cos(x) / 2 \ | 2 / 2 \ 2*cos (x)*(-2 + tan(x)) 2*(-2 + tan(x))*cos(x) 3*cos (x)*\1 + tan (x)/ 6*\1 + tan (x)/*cos(x)*tan(x)|
sin (x)*|3 - |\1 + tan (x)/*log(sin(x)) + --------------------| + 3*tan (x) - 2*\1 + tan (x)/ *log(sin(x)) + 3*|\1 + tan (x)/*log(sin(x)) + --------------------|*|2 - tan(x) - --------------------- + ---------------------- + 2*\1 + tan (x)/*log(sin(x))*tan(x)| - 4*tan (x)*\1 + tan (x)/*log(sin(x)) - ----------------------- - ---------------------- + ----------------------- - -----------------------------|
| \ sin(x) / \ sin(x) / | 2 sin(x) | 3 sin(x) 2 sin(x) |
\ \ sin (x) / sin (x) sin (x) /
$$\left(- \left(\frac{\cos{\left (x \right )}}{\sin{\left (x \right )}} \left(\tan{\left (x \right )} - 2\right) + \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\sin{\left (x \right )} \right )}\right)^{3} + 3 \left(\frac{\cos{\left (x \right )}}{\sin{\left (x \right )}} \left(\tan{\left (x \right )} - 2\right) + \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\sin{\left (x \right )} \right )}\right) \left(- \frac{\cos^{2}{\left (x \right )}}{\sin^{2}{\left (x \right )}} \left(\tan{\left (x \right )} - 2\right) + 2 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\sin{\left (x \right )} \right )} \tan{\left (x \right )} + \frac{2 \cos{\left (x \right )}}{\sin{\left (x \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) - \tan{\left (x \right )} + 2\right) - \frac{2 \cos{\left (x \right )}}{\sin{\left (x \right )}} \left(\tan{\left (x \right )} - 2\right) - \frac{2 \cos^{3}{\left (x \right )}}{\sin^{3}{\left (x \right )}} \left(\tan{\left (x \right )} - 2\right) - 2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \log{\left (\sin{\left (x \right )} \right )} - 4 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (\sin{\left (x \right )} \right )} \tan^{2}{\left (x \right )} - \frac{6 \cos{\left (x \right )}}{\sin{\left (x \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \frac{3 \cos^{2}{\left (x \right )}}{\sin^{2}{\left (x \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) + 3 \tan^{2}{\left (x \right )} + 3\right) \sin^{- \tan{\left (x \right )} + 2}{\left (x \right )}$$