Подробное решение
Заменим .
Производная синуса есть косинус:
Затем примените цепочку правил. Умножим на :
Не могу найти шаги в поиске этой производной.
Но производная
В результате последовательности правил:
Ответ:
cos(x) /cos(x) \ / cos(x)\
x *|------ - log(x)*sin(x)|*cos\x /
\ x /
$$x^{\cos{\left (x \right )}} \left(- \log{\left (x \right )} \sin{\left (x \right )} + \frac{1}{x} \cos{\left (x \right )}\right) \cos{\left (x^{\cos{\left (x \right )}} \right )}$$
/ 2 2 \
cos(x) |/ cos(x)\ / cos(x)\ /cos(x) 2*sin(x)\ / cos(x)\ cos(x) / cos(x)\ / cos(x)\|
x *||log(x)*sin(x) - ------| *cos\x / - |------ + cos(x)*log(x) + --------|*cos\x / - x *|log(x)*sin(x) - ------| *sin\x /|
|\ x / | 2 x | \ x / |
\ \ x / /
$$x^{\cos{\left (x \right )}} \left(- x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{2} \sin{\left (x^{\cos{\left (x \right )}} \right )} + \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{2} \cos{\left (x^{\cos{\left (x \right )}} \right )} - \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) \cos{\left (x^{\cos{\left (x \right )}} \right )}\right)$$
/ 3 3 3 \
cos(x) |/ 3*cos(x) 2*cos(x) 3*sin(x)\ / cos(x)\ / cos(x)\ / cos(x)\ 2*cos(x) / cos(x)\ / cos(x)\ cos(x) / cos(x)\ / cos(x)\ / cos(x)\ /cos(x) 2*sin(x)\ / cos(x)\ cos(x) / cos(x)\ /cos(x) 2*sin(x)\ / cos(x)\|
x *||log(x)*sin(x) - -------- + -------- + --------|*cos\x / - |log(x)*sin(x) - ------| *cos\x / + x *|log(x)*sin(x) - ------| *cos\x / + 3*x *|log(x)*sin(x) - ------| *sin\x / + 3*|log(x)*sin(x) - ------|*|------ + cos(x)*log(x) + --------|*cos\x / - 3*x *|log(x)*sin(x) - ------|*|------ + cos(x)*log(x) + --------|*sin\x /|
|| x 3 2 | \ x / \ x / \ x / \ x / | 2 x | \ x / | 2 x | |
\\ x x / \ x / \ x / /
$$x^{\cos{\left (x \right )}} \left(x^{2 \cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} \cos{\left (x^{\cos{\left (x \right )}} \right )} + 3 x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} \sin{\left (x^{\cos{\left (x \right )}} \right )} - 3 x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right) \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) \sin{\left (x^{\cos{\left (x \right )}} \right )} - \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} \cos{\left (x^{\cos{\left (x \right )}} \right )} + 3 \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right) \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) \cos{\left (x^{\cos{\left (x \right )}} \right )} + \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{3}{x} \cos{\left (x \right )} + \frac{3}{x^{2}} \sin{\left (x \right )} + \frac{2}{x^{3}} \cos{\left (x \right )}\right) \cos{\left (x^{\cos{\left (x \right )}} \right )}\right)$$