Найти производную y' = f'(x) = sin(x^cos(x)) (синус от (х в степени косинус от (х))) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная sin(x^cos(x))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   / cos(x)\
sin\x      /
$$\sin{\left (x^{\cos{\left (x \right )}} \right )}$$
Подробное решение
  1. Заменим .

  2. Производная синуса есть косинус:

  3. Затем примените цепочку правил. Умножим на :

    1. Не могу найти шаги в поиске этой производной.

      Но производная

    В результате последовательности правил:


Ответ:

График
Первая производная [src]
 cos(x) /cos(x)                \    / cos(x)\
x      *|------ - log(x)*sin(x)|*cos\x      /
        \  x                   /             
$$x^{\cos{\left (x \right )}} \left(- \log{\left (x \right )} \sin{\left (x \right )} + \frac{1}{x} \cos{\left (x \right )}\right) \cos{\left (x^{\cos{\left (x \right )}} \right )}$$
Вторая производная [src]
        /                        2                                                                                                   2             \
 cos(x) |/                cos(x)\     / cos(x)\   /cos(x)                   2*sin(x)\    / cos(x)\    cos(x) /                cos(x)\     / cos(x)\|
x      *||log(x)*sin(x) - ------| *cos\x      / - |------ + cos(x)*log(x) + --------|*cos\x      / - x      *|log(x)*sin(x) - ------| *sin\x      /|
        |\                  x   /                 |   2                        x    |                        \                  x   /              |
        \                                         \  x                              /                                                              /
$$x^{\cos{\left (x \right )}} \left(- x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{2} \sin{\left (x^{\cos{\left (x \right )}} \right )} + \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{2} \cos{\left (x^{\cos{\left (x \right )}} \right )} - \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) \cos{\left (x^{\cos{\left (x \right )}} \right )}\right)$$
Третья производная [src]
        /                                                                                        3                                                  3                                                  3                                                                                                                                                                                 \
 cos(x) |/                3*cos(x)   2*cos(x)   3*sin(x)\    / cos(x)\   /                cos(x)\     / cos(x)\    2*cos(x) /                cos(x)\     / cos(x)\      cos(x) /                cos(x)\     / cos(x)\     /                cos(x)\ /cos(x)                   2*sin(x)\    / cos(x)\      cos(x) /                cos(x)\ /cos(x)                   2*sin(x)\    / cos(x)\|
x      *||log(x)*sin(x) - -------- + -------- + --------|*cos\x      / - |log(x)*sin(x) - ------| *cos\x      / + x        *|log(x)*sin(x) - ------| *cos\x      / + 3*x      *|log(x)*sin(x) - ------| *sin\x      / + 3*|log(x)*sin(x) - ------|*|------ + cos(x)*log(x) + --------|*cos\x      / - 3*x      *|log(x)*sin(x) - ------|*|------ + cos(x)*log(x) + --------|*sin\x      /|
        ||                   x           3          2   |                \                  x   /                           \                  x   /                           \                  x   /                   \                  x   / |   2                        x    |                          \                  x   / |   2                        x    |             |
        \\                              x          x    /                                                                                                                                                                                          \  x                              /                                                   \  x                              /             /
$$x^{\cos{\left (x \right )}} \left(x^{2 \cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} \cos{\left (x^{\cos{\left (x \right )}} \right )} + 3 x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} \sin{\left (x^{\cos{\left (x \right )}} \right )} - 3 x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right) \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) \sin{\left (x^{\cos{\left (x \right )}} \right )} - \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} \cos{\left (x^{\cos{\left (x \right )}} \right )} + 3 \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right) \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) \cos{\left (x^{\cos{\left (x \right )}} \right )} + \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{3}{x} \cos{\left (x \right )} + \frac{3}{x^{2}} \sin{\left (x \right )} + \frac{2}{x^{3}} \cos{\left (x \right )}\right) \cos{\left (x^{\cos{\left (x \right )}} \right )}\right)$$