Подробное решение
Заменим .
Производная синуса есть косинус:
Затем примените цепочку правил. Умножим на :
Не могу найти шаги в поиске этой производной.
Но производная
В результате последовательности правил:
Ответ:
sin(x) /sin(x) \ / sin(x)\
x *|------ + cos(x)*log(x)|*cos\x /
\ x /
$$x^{\sin{\left (x \right )}} \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right) \cos{\left (x^{\sin{\left (x \right )}} \right )}$$
/ 2 2 \
sin(x) |/sin(x) \ / sin(x)\ /sin(x) 2*cos(x)\ / sin(x)\ sin(x) /sin(x) \ / sin(x)\|
x *||------ + cos(x)*log(x)| *cos\x / - |------ + log(x)*sin(x) - --------|*cos\x / - x *|------ + cos(x)*log(x)| *sin\x /|
|\ x / | 2 x | \ x / |
\ \ x / /
$$x^{\sin{\left (x \right )}} \left(- x^{\sin{\left (x \right )}} \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right)^{2} \sin{\left (x^{\sin{\left (x \right )}} \right )} + \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right)^{2} \cos{\left (x^{\sin{\left (x \right )}} \right )} - \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{2}{x} \cos{\left (x \right )} + \frac{1}{x^{2}} \sin{\left (x \right )}\right) \cos{\left (x^{\sin{\left (x \right )}} \right )}\right)$$
/ 3 3 3 \
sin(x) |/sin(x) \ / sin(x)\ / 2*sin(x) 3*sin(x) 3*cos(x)\ / sin(x)\ 2*sin(x) /sin(x) \ / sin(x)\ sin(x) /sin(x) \ / sin(x)\ /sin(x) \ /sin(x) 2*cos(x)\ / sin(x)\ sin(x) /sin(x) \ /sin(x) 2*cos(x)\ / sin(x)\|
x *||------ + cos(x)*log(x)| *cos\x / - |cos(x)*log(x) - -------- + -------- + --------|*cos\x / - x *|------ + cos(x)*log(x)| *cos\x / - 3*x *|------ + cos(x)*log(x)| *sin\x / - 3*|------ + cos(x)*log(x)|*|------ + log(x)*sin(x) - --------|*cos\x / + 3*x *|------ + cos(x)*log(x)|*|------ + log(x)*sin(x) - --------|*sin\x /|
|\ x / | 3 x 2 | \ x / \ x / \ x / | 2 x | \ x / | 2 x | |
\ \ x x / \ x / \ x / /
$$x^{\sin{\left (x \right )}} \left(- x^{2 \sin{\left (x \right )}} \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right)^{3} \cos{\left (x^{\sin{\left (x \right )}} \right )} - 3 x^{\sin{\left (x \right )}} \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right)^{3} \sin{\left (x^{\sin{\left (x \right )}} \right )} + 3 x^{\sin{\left (x \right )}} \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right) \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{2}{x} \cos{\left (x \right )} + \frac{1}{x^{2}} \sin{\left (x \right )}\right) \sin{\left (x^{\sin{\left (x \right )}} \right )} + \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right)^{3} \cos{\left (x^{\sin{\left (x \right )}} \right )} - 3 \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right) \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{2}{x} \cos{\left (x \right )} + \frac{1}{x^{2}} \sin{\left (x \right )}\right) \cos{\left (x^{\sin{\left (x \right )}} \right )} - \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{3}{x} \sin{\left (x \right )} + \frac{3}{x^{2}} \cos{\left (x \right )} - \frac{2}{x^{3}} \sin{\left (x \right )}\right) \cos{\left (x^{\sin{\left (x \right )}} \right )}\right)$$