Применяем правило производной умножения:
dxd(f(x)g(x))=f(x)dxdg(x)+g(x)dxdf(x)
f(x)=100x; найдём dxdf(x):
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.
В силу правила, применим: x получим 1
Таким образом, в результате: 100
g(x)=−x+1; найдём dxdg(x):
дифференцируем −x+1 почленно:
Производная постоянной 1 равна нулю.
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.
В силу правила, применим: x получим 1
Таким образом, в результате: −1
В результате: −1
В результате: −200x+100