Найти производную y' = f'(x) = tan(4*x)/x (тангенс от (4 умножить на х) делить на х) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная tan(4*x)/x

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
tan(4*x)
--------
   x    
$$\frac{1}{x} \tan{\left (4 x \right )}$$
Подробное решение
  1. Применим правило производной частного:

    и .

    Чтобы найти :

    1. Есть несколько способов вычислить эту производную.

      Один из способов:

      1. Заменим .

      2. Затем примените цепочку правил. Умножим на :

        1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

          1. В силу правила, применим: получим

          Таким образом, в результате:

        В результате последовательности правил:

    Чтобы найти :

    1. В силу правила, применим: получим

    Теперь применим правило производной деления:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
         2                
4 + 4*tan (4*x)   tan(4*x)
--------------- - --------
       x              2   
                     x    
$$\frac{1}{x} \left(4 \tan^{2}{\left (4 x \right )} + 4\right) - \frac{1}{x^{2}} \tan{\left (4 x \right )}$$
Вторая производная [src]
  /             /       2     \                              \
  |tan(4*x)   4*\1 + tan (4*x)/      /       2     \         |
2*|-------- - ----------------- + 16*\1 + tan (4*x)/*tan(4*x)|
  |    2              x                                      |
  \   x                                                      /
--------------------------------------------------------------
                              x                               
$$\frac{1}{x} \left(32 \left(\tan^{2}{\left (4 x \right )} + 1\right) \tan{\left (4 x \right )} - \frac{1}{x} \left(8 \tan^{2}{\left (4 x \right )} + 8\right) + \frac{2}{x^{2}} \tan{\left (4 x \right )}\right)$$
Третья производная [src]
  /                  2                   /       2     \                                      /       2     \         \
  |   /       2     \    3*tan(4*x)   12*\1 + tan (4*x)/          2      /       2     \   48*\1 + tan (4*x)/*tan(4*x)|
2*|64*\1 + tan (4*x)/  - ---------- + ------------------ + 128*tan (4*x)*\1 + tan (4*x)/ - ---------------------------|
  |                           3                2                                                        x             |
  \                          x                x                                                                       /
-----------------------------------------------------------------------------------------------------------------------
                                                           x                                                           
$$\frac{1}{x} \left(128 \left(\tan^{2}{\left (4 x \right )} + 1\right)^{2} + 256 \left(\tan^{2}{\left (4 x \right )} + 1\right) \tan^{2}{\left (4 x \right )} - \frac{96}{x} \left(\tan^{2}{\left (4 x \right )} + 1\right) \tan{\left (4 x \right )} + \frac{1}{x^{2}} \left(24 \tan^{2}{\left (4 x \right )} + 24\right) - \frac{6}{x^{3}} \tan{\left (4 x \right )}\right)$$