Производная tan(8*x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
tan(8*x)
tan(8x)\tan{\left(8 x \right)}
d           
--(tan(8*x))
dx          
ddxtan(8x)\frac{d}{d x} \tan{\left(8 x \right)}
Подробное решение
  1. Перепишем функции, чтобы дифференцировать:

    tan(8x)=sin(8x)cos(8x)\tan{\left(8 x \right)} = \frac{\sin{\left(8 x \right)}}{\cos{\left(8 x \right)}}

  2. Применим правило производной частного:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(8x)f{\left(x \right)} = \sin{\left(8 x \right)} и g(x)=cos(8x)g{\left(x \right)} = \cos{\left(8 x \right)}.

    Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Заменим u=8xu = 8 x.

    2. Производная синуса есть косинус:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Затем примените цепочку правил. Умножим на ddx8x\frac{d}{d x} 8 x:

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: xx получим 11

        Таким образом, в результате: 88

      В результате последовательности правил:

      8cos(8x)8 \cos{\left(8 x \right)}

    Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Заменим u=8xu = 8 x.

    2. Производная косинус есть минус синус:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Затем примените цепочку правил. Умножим на ddx8x\frac{d}{d x} 8 x:

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: xx получим 11

        Таким образом, в результате: 88

      В результате последовательности правил:

      8sin(8x)- 8 \sin{\left(8 x \right)}

    Теперь применим правило производной деления:

    8sin2(8x)+8cos2(8x)cos2(8x)\frac{8 \sin^{2}{\left(8 x \right)} + 8 \cos^{2}{\left(8 x \right)}}{\cos^{2}{\left(8 x \right)}}

  3. Теперь упростим:

    8cos2(8x)\frac{8}{\cos^{2}{\left(8 x \right)}}


Ответ:

8cos2(8x)\frac{8}{\cos^{2}{\left(8 x \right)}}

График
02468-8-6-4-2-1010-500010000
Первая производная [src]
         2     
8 + 8*tan (8*x)
8tan2(8x)+88 \tan^{2}{\left(8 x \right)} + 8
Вторая производная [src]
    /       2     \         
128*\1 + tan (8*x)/*tan(8*x)
128(tan2(8x)+1)tan(8x)128 \left(\tan^{2}{\left(8 x \right)} + 1\right) \tan{\left(8 x \right)}
Третья производная [src]
     /       2     \ /         2     \
1024*\1 + tan (8*x)/*\1 + 3*tan (8*x)/
1024(tan2(8x)+1)(3tan2(8x)+1)1024 \left(\tan^{2}{\left(8 x \right)} + 1\right) \left(3 \tan^{2}{\left(8 x \right)} + 1\right)
График
Производная tan(8*x) /media/krcore-image-pods/hash/derivative/7/ab/13d7a8cbc668a40ca58daa4b23db4.png