Производная tan(x/2)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   /x\
tan|-|
   \2/
tan(x2)\tan{\left(\frac{x}{2} \right)}
d /   /x\\
--|tan|-||
dx\   \2//
ddxtan(x2)\frac{d}{d x} \tan{\left(\frac{x}{2} \right)}
Подробное решение
  1. Перепишем функции, чтобы дифференцировать:

    tan(x2)=sin(x2)cos(x2)\tan{\left(\frac{x}{2} \right)} = \frac{\sin{\left(\frac{x}{2} \right)}}{\cos{\left(\frac{x}{2} \right)}}

  2. Применим правило производной частного:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(x2)f{\left(x \right)} = \sin{\left(\frac{x}{2} \right)} и g(x)=cos(x2)g{\left(x \right)} = \cos{\left(\frac{x}{2} \right)}.

    Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Заменим u=x2u = \frac{x}{2}.

    2. Производная синуса есть косинус:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Затем примените цепочку правил. Умножим на ddxx2\frac{d}{d x} \frac{x}{2}:

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: xx получим 11

        Таким образом, в результате: 12\frac{1}{2}

      В результате последовательности правил:

      cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

    Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Заменим u=x2u = \frac{x}{2}.

    2. Производная косинус есть минус синус:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Затем примените цепочку правил. Умножим на ddxx2\frac{d}{d x} \frac{x}{2}:

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: xx получим 11

        Таким образом, в результате: 12\frac{1}{2}

      В результате последовательности правил:

      sin(x2)2- \frac{\sin{\left(\frac{x}{2} \right)}}{2}

    Теперь применим правило производной деления:

    sin2(x2)2+cos2(x2)2cos2(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)}}

  3. Теперь упростим:

    1cos(x)+1\frac{1}{\cos{\left(x \right)} + 1}


Ответ:

1cos(x)+1\frac{1}{\cos{\left(x \right)} + 1}

График
02468-8-6-4-2-1010-2000020000
Первая производная [src]
       2/x\
    tan |-|
1       \2/
- + -------
2      2   
tan2(x2)2+12\frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}
Вторая производная [src]
/       2/x\\    /x\
|1 + tan |-||*tan|-|
\        \2//    \2/
--------------------
         2          
(tan2(x2)+1)tan(x2)2\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}{2}
Третья производная [src]
/       2/x\\ /         2/x\\
|1 + tan |-||*|1 + 3*tan |-||
\        \2// \          \2//
-----------------------------
              4              
(tan2(x2)+1)(3tan2(x2)+1)4\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{x}{2} \right)} + 1\right)}{4}
График
Производная tan(x/2) /media/krcore-image-pods/hash/derivative/a/24/a43728bafd228d328601e49299cb0.png