Найти производную y' = f'(x) = (tan(x)/x) ((тангенс от (х) делить на х)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная (tan(x)/x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
tan(x)
------
  x   
$$\frac{\tan{\left(x \right)}}{x}$$
d /tan(x)\
--|------|
dx\  x   /
$$\frac{d}{d x} \frac{\tan{\left(x \right)}}{x}$$
Подробное решение
  1. Применим правило производной частного:

    и .

    Чтобы найти :

    1. Перепишем функции, чтобы дифференцировать:

    2. Применим правило производной частного:

      и .

      Чтобы найти :

      1. Производная синуса есть косинус:

      Чтобы найти :

      1. Производная косинус есть минус синус:

      Теперь применим правило производной деления:

    Чтобы найти :

    1. В силу правила, применим: получим

    Теперь применим правило производной деления:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
       2            
1 + tan (x)   tan(x)
----------- - ------
     x           2  
                x   
$$\frac{\tan^{2}{\left(x \right)} + 1}{x} - \frac{\tan{\left(x \right)}}{x^{2}}$$
Вторая производная [src]
  /                                       2   \
  |tan(x)   /       2   \          1 + tan (x)|
2*|------ + \1 + tan (x)/*tan(x) - -----------|
  |   2                                 x     |
  \  x                                        /
-----------------------------------------------
                       x                       
$$\frac{2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{\tan^{2}{\left(x \right)} + 1}{x} + \frac{\tan{\left(x \right)}}{x^{2}}\right)}{x}$$
Третья производная [src]
  /                                             /       2   \     /       2   \       \
  |/       2   \ /         2   \   3*tan(x)   3*\1 + tan (x)/   3*\1 + tan (x)/*tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/ - -------- + --------------- - ----------------------|
  |                                    3              2                   x           |
  \                                   x              x                                /
---------------------------------------------------------------------------------------
                                           x                                           
$$\frac{2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{x} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{x^{2}} - \frac{3 \tan{\left(x \right)}}{x^{3}}\right)}{x}$$
График
Производная (tan(x)/x) /media/krcore-image-pods/hash/derivative/6/50/9b9d8b8fb097a184d05c641c01966.png