Производная tan(x)/x^3

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
tan(x)
------
   3  
  x   
tan(x)x3\frac{\tan{\left(x \right)}}{x^{3}}
d /tan(x)\
--|------|
dx|   3  |
  \  x   /
ddxtan(x)x3\frac{d}{d x} \frac{\tan{\left(x \right)}}{x^{3}}
Подробное решение
  1. Применим правило производной частного:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=tan(x)f{\left(x \right)} = \tan{\left(x \right)} и g(x)=x3g{\left(x \right)} = x^{3}.

    Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Перепишем функции, чтобы дифференцировать:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    2. Применим правило производной частного:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} и g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Производная синуса есть косинус:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Производная косинус есть минус синус:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Теперь применим правило производной деления:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. В силу правила, применим: x3x^{3} получим 3x23 x^{2}

    Теперь применим правило производной деления:

    x3(sin2(x)+cos2(x))cos2(x)3x2tan(x)x6\frac{\frac{x^{3} \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}} - 3 x^{2} \tan{\left(x \right)}}{x^{6}}

  2. Теперь упростим:

    x3sin(2x)2x4cos2(x)\frac{x - \frac{3 \sin{\left(2 x \right)}}{2}}{x^{4} \cos^{2}{\left(x \right)}}


Ответ:

x3sin(2x)2x4cos2(x)\frac{x - \frac{3 \sin{\left(2 x \right)}}{2}}{x^{4} \cos^{2}{\left(x \right)}}

График
02468-8-6-4-2-1010-50005000
Первая производная [src]
       2              
1 + tan (x)   3*tan(x)
----------- - --------
      3           4   
     x           x    
tan2(x)+1x33tan(x)x4\frac{\tan^{2}{\left(x \right)} + 1}{x^{3}} - \frac{3 \tan{\left(x \right)}}{x^{4}}
Вторая производная [src]
  /                         /       2   \           \
  |/       2   \          3*\1 + tan (x)/   6*tan(x)|
2*|\1 + tan (x)/*tan(x) - --------------- + --------|
  |                              x              2   |
  \                                            x    /
-----------------------------------------------------
                           3                         
                          x                          
2((tan2(x)+1)tan(x)3(tan2(x)+1)x+6tan(x)x2)x3\frac{2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{x} + \frac{6 \tan{\left(x \right)}}{x^{2}}\right)}{x^{3}}
Третья производная [src]
  /                                               /       2   \     /       2   \       \
  |/       2   \ /         2   \   30*tan(x)   18*\1 + tan (x)/   9*\1 + tan (x)/*tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/ - --------- + ---------------- - ----------------------|
  |                                     3              2                    x           |
  \                                    x              x                                 /
-----------------------------------------------------------------------------------------
                                             3                                           
                                            x                                            
2((tan2(x)+1)(3tan2(x)+1)9(tan2(x)+1)tan(x)x+18(tan2(x)+1)x230tan(x)x3)x3\frac{2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) - \frac{9 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{x} + \frac{18 \left(\tan^{2}{\left(x \right)} + 1\right)}{x^{2}} - \frac{30 \tan{\left(x \right)}}{x^{3}}\right)}{x^{3}}
График
Производная tan(x)/x^3 /media/krcore-image-pods/hash/derivative/7/cb/dba2bb1c7b329a24e4222c894f4e1.png