Производная tan(x)*cot(x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
tan(x)*cot(x)
tan(x)cot(x)\tan{\left(x \right)} \cot{\left(x \right)}
d                
--(tan(x)*cot(x))
dx               
ddxtan(x)cot(x)\frac{d}{d x} \tan{\left(x \right)} \cot{\left(x \right)}
Подробное решение
  1. Применяем правило производной умножения:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=tan(x)f{\left(x \right)} = \tan{\left(x \right)}; найдём ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Перепишем функции, чтобы дифференцировать:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    2. Применим правило производной частного:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} и g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Производная синуса есть косинус:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Производная косинус есть минус синус:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Теперь применим правило производной деления:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    g(x)=cot(x)g{\left(x \right)} = \cot{\left(x \right)}; найдём ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Есть несколько способов вычислить эту производную.

      Method #1

      1. Перепишем функции, чтобы дифференцировать:

        cot(x)=1tan(x)\cot{\left(x \right)} = \frac{1}{\tan{\left(x \right)}}

      2. Заменим u=tan(x)u = \tan{\left(x \right)}.

      3. В силу правила, применим: 1u\frac{1}{u} получим 1u2- \frac{1}{u^{2}}

      4. Затем примените цепочку правил. Умножим на ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

        1. ddxtan(x)=1cos2(x)\frac{d}{d x} \tan{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}

        В результате последовательности правил:

        sin2(x)+cos2(x)cos2(x)tan2(x)- \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

      Method #2

      1. Перепишем функции, чтобы дифференцировать:

        cot(x)=cos(x)sin(x)\cot{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

      2. Применим правило производной частного:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)} и g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}.

        Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Производная косинус есть минус синус:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Производная синуса есть косинус:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        Теперь применим правило производной деления:

        sin2(x)cos2(x)sin2(x)\frac{- \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}

    В результате: (sin2(x)+cos2(x))cot(x)cos2(x)sin2(x)+cos2(x)cos2(x)tan(x)\frac{\left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \cot{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan{\left(x \right)}}

  2. Теперь упростим:

    00


Ответ:

00

График
02468-8-6-4-2-101002
Первая производная [src]
/       2   \          /        2   \       
\1 + tan (x)/*cot(x) + \-1 - cot (x)/*tan(x)
(tan2(x)+1)cot(x)+(cot2(x)1)tan(x)\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + \left(- \cot^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)}
Вторая производная [src]
  /  /       2   \ /       2   \   /       2   \                 /       2   \              \
2*\- \1 + cot (x)/*\1 + tan (x)/ + \1 + cot (x)/*cot(x)*tan(x) + \1 + tan (x)/*cot(x)*tan(x)/
2((tan2(x)+1)(cot2(x)+1)+(tan2(x)+1)tan(x)cot(x)+(cot2(x)+1)tan(x)cot(x))2 \left(- \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) + \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)} + \left(\cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)}\right)
Третья производная [src]
  //       2   \ /         2   \          /       2   \ /         2   \            /       2   \ /       2   \            /       2   \ /       2   \       \
2*\\1 + tan (x)/*\1 + 3*tan (x)/*cot(x) - \1 + cot (x)/*\1 + 3*cot (x)/*tan(x) - 3*\1 + cot (x)/*\1 + tan (x)/*tan(x) + 3*\1 + cot (x)/*\1 + tan (x)/*cot(x)/
2((tan2(x)+1)(3tan2(x)+1)cot(x)3(tan2(x)+1)(cot2(x)+1)tan(x)+3(tan2(x)+1)(cot2(x)+1)cot(x)(cot2(x)+1)(3cot2(x)+1)tan(x))2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} - 3 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} - \left(\cot^{2}{\left(x \right)} + 1\right) \left(3 \cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}\right)
График
Производная tan(x)*cot(x) /media/krcore-image-pods/1/16/8ac41982f271ffa406c3eb99f562a.png