Производная 3/x^3

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
3 
--
 3
x 
3x3\frac{3}{x^{3}}
d /3 \
--|--|
dx| 3|
  \x /
ddx3x3\frac{d}{d x} \frac{3}{x^{3}}
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим u=x3u = x^{3}.

    2. В силу правила, применим: 1u\frac{1}{u} получим 1u2- \frac{1}{u^{2}}

    3. Затем примените цепочку правил. Умножим на ddxx3\frac{d}{d x} x^{3}:

      1. В силу правила, применим: x3x^{3} получим 3x23 x^{2}

      В результате последовательности правил:

      3x4- \frac{3}{x^{4}}

    Таким образом, в результате: 9x4- \frac{9}{x^{4}}


Ответ:

9x4- \frac{9}{x^{4}}

График
02468-8-6-4-2-1010-100000100000
Первая производная [src]
-9 
---
  4
 x 
9x4- \frac{9}{x^{4}}
Вторая производная [src]
36
--
 5
x 
36x5\frac{36}{x^{5}}
Третья производная [src]
-180 
-----
   6 
  x  
180x6- \frac{180}{x^{6}}
График
Производная 3/x^3 /media/krcore-image-pods/hash/derivative/f/ec/de33adcec6a282919f1bb7c9095a2.png