acos(2*x)
-2*3 *log(3)
--------------------
__________
/ 2
\/ 1 - 4*x
$$- \frac{2 \cdot 3^{\operatorname{acos}{\left (2 x \right )}}}{\sqrt{- 4 x^{2} + 1}} \log{\left (3 \right )}$$
acos(2*x) / log(3) 2*x \
-4*3 *|--------- + -------------|*log(3)
| 2 3/2|
|-1 + 4*x / 2\ |
\ \1 - 4*x / /
$$- 4 \cdot 3^{\operatorname{acos}{\left (2 x \right )}} \left(\frac{2 x}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}} + \frac{\log{\left (3 \right )}}{4 x^{2} - 1}\right) \log{\left (3 \right )}$$
/ 2 2 \
acos(2*x) | 1 log (3) 12*x 6*x*log(3) |
8*3 *|- ------------- - ------------- - ------------- + ------------|*log(3)
| 3/2 3/2 5/2 2|
| / 2\ / 2\ / 2\ / 2\ |
\ \1 - 4*x / \1 - 4*x / \1 - 4*x / \-1 + 4*x / /
$$8 \cdot 3^{\operatorname{acos}{\left (2 x \right )}} \left(- \frac{12 x^{2}}{\left(- 4 x^{2} + 1\right)^{\frac{5}{2}}} + \frac{6 x \log{\left (3 \right )}}{\left(4 x^{2} - 1\right)^{2}} - \frac{\log^{2}{\left (3 \right )}}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}}\right) \log{\left (3 \right )}$$