Производная 3^x/cos(x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   x  
  3   
------
cos(x)
3xcos(x)\frac{3^{x}}{\cos{\left(x \right)}}
  /   x  \
d |  3   |
--|------|
dx\cos(x)/
ddx3xcos(x)\frac{d}{d x} \frac{3^{x}}{\cos{\left(x \right)}}
Подробное решение
  1. Применим правило производной частного:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=3xf{\left(x \right)} = 3^{x} и g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

    Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. ddx3x=3xlog(3)\frac{d}{d x} 3^{x} = 3^{x} \log{\left(3 \right)}

    Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Производная косинус есть минус синус:

      ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

    Теперь применим правило производной деления:

    3xsin(x)+3xlog(3)cos(x)cos2(x)\frac{3^{x} \sin{\left(x \right)} + 3^{x} \log{\left(3 \right)} \cos{\left(x \right)}}{\cos^{2}{\left(x \right)}}

  2. Теперь упростим:

    3x(tan(x)+log(3))cos(x)\frac{3^{x} \left(\tan{\left(x \right)} + \log{\left(3 \right)}\right)}{\cos{\left(x \right)}}


Ответ:

3x(tan(x)+log(3))cos(x)\frac{3^{x} \left(\tan{\left(x \right)} + \log{\left(3 \right)}\right)}{\cos{\left(x \right)}}

График
02468-8-6-4-2-1010-10000001000000
Первая производная [src]
 x           x       
3 *log(3)   3 *sin(x)
--------- + ---------
  cos(x)        2    
             cos (x) 
3xsin(x)cos2(x)+3xlog(3)cos(x)\frac{3^{x} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{3^{x} \log{\left(3 \right)}}{\cos{\left(x \right)}}
Вторая производная [src]
   /                   2                     \
 x |       2      2*sin (x)   2*log(3)*sin(x)|
3 *|1 + log (3) + --------- + ---------------|
   |                  2            cos(x)    |
   \               cos (x)                   /
----------------------------------------------
                    cos(x)                    
3x(2sin2(x)cos2(x)+2log(3)sin(x)cos(x)+1+log(3)2)cos(x)\frac{3^{x} \left(\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{2 \log{\left(3 \right)} \sin{\left(x \right)}}{\cos{\left(x \right)}} + 1 + \log{\left(3 \right)}^{2}\right)}{\cos{\left(x \right)}}
Третья производная [src]
   /                                     /         2   \                          \
   |                                     |    6*sin (x)|                          |
   |                                     |5 + ---------|*sin(x)                   |
   |            /         2   \          |        2    |               2          |
 x |   3        |    2*sin (x)|          \     cos (x) /          3*log (3)*sin(x)|
3 *|log (3) + 3*|1 + ---------|*log(3) + ---------------------- + ----------------|
   |            |        2    |                  cos(x)                cos(x)     |
   \            \     cos (x) /                                                   /
-----------------------------------------------------------------------------------
                                       cos(x)                                      
3x(3(2sin2(x)cos2(x)+1)log(3)+(6sin2(x)cos2(x)+5)sin(x)cos(x)+3log(3)2sin(x)cos(x)+log(3)3)cos(x)\frac{3^{x} \left(3 \cdot \left(\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) \log{\left(3 \right)} + \frac{\left(\frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 5\right) \sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{3 \log{\left(3 \right)}^{2} \sin{\left(x \right)}}{\cos{\left(x \right)}} + \log{\left(3 \right)}^{3}\right)}{\cos{\left(x \right)}}
График
Производная 3^x/cos(x) /media/krcore-image-pods/hash/derivative/f/84/b4d3a90f96062ea0a40476101ea0f.png