Подробное решение
Заменим .
Затем примените цепочку правил. Умножим на :
Не могу найти шаги в поиске этой производной.
Но производная
В результате последовательности правил:
Ответ:
/ cos(x)\
\x / cos(x) /cos(x) \
3 *x *|------ - log(x)*sin(x)|*log(3)
\ x /
$$3^{x^{\cos{\left (x \right )}}} x^{\cos{\left (x \right )}} \left(- \log{\left (x \right )} \sin{\left (x \right )} + \frac{1}{x} \cos{\left (x \right )}\right) \log{\left (3 \right )}$$
/ cos(x)\ / 2 2 \
\x / cos(x) |/ cos(x)\ cos(x) 2*sin(x) cos(x) / cos(x)\ |
3 *x *||log(x)*sin(x) - ------| - ------ - cos(x)*log(x) - -------- + x *|log(x)*sin(x) - ------| *log(3)|*log(3)
|\ x / 2 x \ x / |
\ x /
$$3^{x^{\cos{\left (x \right )}}} x^{\cos{\left (x \right )}} \left(x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{2} \log{\left (3 \right )} + \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{2} - \log{\left (x \right )} \cos{\left (x \right )} - \frac{2}{x} \sin{\left (x \right )} - \frac{1}{x^{2}} \cos{\left (x \right )}\right) \log{\left (3 \right )}$$
/ cos(x)\ / 3 3 3 \
\x / cos(x) | / cos(x)\ 3*cos(x) 2*cos(x) 3*sin(x) / cos(x)\ /cos(x) 2*sin(x)\ 2*cos(x) / cos(x)\ 2 cos(x) / cos(x)\ cos(x) / cos(x)\ /cos(x) 2*sin(x)\ |
3 *x *|- |log(x)*sin(x) - ------| + log(x)*sin(x) - -------- + -------- + -------- + 3*|log(x)*sin(x) - ------|*|------ + cos(x)*log(x) + --------| - x *|log(x)*sin(x) - ------| *log (3) - 3*x *|log(x)*sin(x) - ------| *log(3) + 3*x *|log(x)*sin(x) - ------|*|------ + cos(x)*log(x) + --------|*log(3)|*log(3)
| \ x / x 3 2 \ x / | 2 x | \ x / \ x / \ x / | 2 x | |
\ x x \ x / \ x / /
$$3^{x^{\cos{\left (x \right )}}} x^{\cos{\left (x \right )}} \left(- x^{2 \cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} \log^{2}{\left (3 \right )} - 3 x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} \log{\left (3 \right )} + 3 x^{\cos{\left (x \right )}} \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right) \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) \log{\left (3 \right )} - \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right)^{3} + 3 \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{1}{x} \cos{\left (x \right )}\right) \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{2}{x} \sin{\left (x \right )} + \frac{1}{x^{2}} \cos{\left (x \right )}\right) + \log{\left (x \right )} \sin{\left (x \right )} - \frac{3}{x} \cos{\left (x \right )} + \frac{3}{x^{2}} \sin{\left (x \right )} + \frac{2}{x^{3}} \cos{\left (x \right )}\right) \log{\left (3 \right )}$$