Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
x
/ x \ / / 1 x \ / x \\
|-----| *|(1 + x)*|----- - --------| + log|-----||
\1 + x/ | |1 + x 2| \1 + x/|
\ \ (1 + x) / /
$$\left(\frac{x}{x + 1}\right)^{x} \left(\left(x + 1\right) \left(- \frac{x}{\left(x + 1\right)^{2}} + \frac{1}{x + 1}\right) + \log{\left (\frac{x}{x + 1} \right )}\right)$$
/ x / x \\
x | 2 -1 + ----- 2*|-1 + -----||
/ x \ | 1 / / x \ x \ x 1 + x \ 1 + x/|
|-----| *|----- + |-1 - log|-----| + -----| - -------- - ---------- + --------------|
\1 + x/ |1 + x \ \1 + x/ 1 + x/ 2 x 1 + x |
\ (1 + x) /
$$\left(\frac{x}{x + 1}\right)^{x} \left(- \frac{x}{\left(x + 1\right)^{2}} + \left(\frac{x}{x + 1} - \log{\left (\frac{x}{x + 1} \right )} - 1\right)^{2} + \frac{\frac{2 x}{x + 1} - 2}{x + 1} + \frac{1}{x + 1} - \frac{1}{x} \left(\frac{x}{x + 1} - 1\right)\right)$$
/ x / x \ / x / x \\ x \
x | 3 -1 + ----- 6*|-1 + -----| | -1 + ----- 2*|-1 + -----|| -1 + -----|
/ x \ | / / x \ x \ 4 1 + x \ 1 + x/ / / x \ x \ | 1 x 1 + x \ 1 + x/| 4*x 1 + x|
|-----| *|- |-1 - log|-----| + -----| - -------- + ---------- - -------------- + 3*|-1 - log|-----| + -----|*|- ----- + -------- + ---------- - --------------| + -------- + ----------|
\1 + x/ | \ \1 + x/ 1 + x/ 2 2 2 \ \1 + x/ 1 + x/ | 1 + x 2 x 1 + x | 3 x*(1 + x) |
\ (1 + x) x (1 + x) \ (1 + x) / (1 + x) /
$$\left(\frac{x}{x + 1}\right)^{x} \left(\frac{4 x}{\left(x + 1\right)^{3}} - \left(\frac{x}{x + 1} - \log{\left (\frac{x}{x + 1} \right )} - 1\right)^{3} + 3 \left(\frac{x}{x + 1} - \log{\left (\frac{x}{x + 1} \right )} - 1\right) \left(\frac{x}{\left(x + 1\right)^{2}} - \frac{\frac{2 x}{x + 1} - 2}{x + 1} - \frac{1}{x + 1} + \frac{1}{x} \left(\frac{x}{x + 1} - 1\right)\right) - \frac{\frac{6 x}{x + 1} - 6}{\left(x + 1\right)^{2}} - \frac{4}{\left(x + 1\right)^{2}} + \frac{\frac{x}{x + 1} - 1}{x \left(x + 1\right)} + \frac{1}{x^{2}} \left(\frac{x}{x + 1} - 1\right)\right)$$