Найти производную y' = f'(x) = (x/(1+x))^x ((х делить на (1 плюс х)) в степени х) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная (x/(1+x))^x

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
       x
/  x  \ 
|-----| 
\1 + x/ 
$$\left(\frac{x}{x + 1}\right)^{x}$$
Подробное решение
  1. Не могу найти шаги в поиске этой производной.

    Но производная


Ответ:

График
Первая производная [src]
       x                                          
/  x  \  /        /  1        x    \      /  x  \\
|-----| *|(1 + x)*|----- - --------| + log|-----||
\1 + x/  |        |1 + x          2|      \1 + x/|
         \        \        (1 + x) /             /
$$\left(\frac{x}{x + 1}\right)^{x} \left(\left(x + 1\right) \left(- \frac{x}{\left(x + 1\right)^{2}} + \frac{1}{x + 1}\right) + \log{\left (\frac{x}{x + 1} \right )}\right)$$
Вторая производная [src]
         /                                                       x       /       x  \\
       x |                                 2              -1 + -----   2*|-1 + -----||
/  x  \  |  1     /        /  x  \     x  \       x            1 + x     \     1 + x/|
|-----| *|----- + |-1 - log|-----| + -----|  - -------- - ---------- + --------------|
\1 + x/  |1 + x   \        \1 + x/   1 + x/           2       x            1 + x     |
         \                                     (1 + x)                               /
$$\left(\frac{x}{x + 1}\right)^{x} \left(- \frac{x}{\left(x + 1\right)^{2}} + \left(\frac{x}{x + 1} - \log{\left (\frac{x}{x + 1} \right )} - 1\right)^{2} + \frac{\frac{2 x}{x + 1} - 2}{x + 1} + \frac{1}{x + 1} - \frac{1}{x} \left(\frac{x}{x + 1} - 1\right)\right)$$
Третья производная [src]
         /                                                 x       /       x  \                               /                            x       /       x  \\                     x  \
       x |                           3              -1 + -----   6*|-1 + -----|                               |                     -1 + -----   2*|-1 + -----||              -1 + -----|
/  x  \  |  /        /  x  \     x  \       4            1 + x     \     1 + x/     /        /  x  \     x  \ |    1        x            1 + x     \     1 + x/|     4*x           1 + x|
|-----| *|- |-1 - log|-----| + -----|  - -------- + ---------- - -------------- + 3*|-1 - log|-----| + -----|*|- ----- + -------- + ---------- - --------------| + -------- + ----------|
\1 + x/  |  \        \1 + x/   1 + x/           2        2                 2        \        \1 + x/   1 + x/ |  1 + x          2       x            1 + x     |          3   x*(1 + x) |
         \                               (1 + x)        x           (1 + x)                                   \          (1 + x)                               /   (1 + x)              /
$$\left(\frac{x}{x + 1}\right)^{x} \left(\frac{4 x}{\left(x + 1\right)^{3}} - \left(\frac{x}{x + 1} - \log{\left (\frac{x}{x + 1} \right )} - 1\right)^{3} + 3 \left(\frac{x}{x + 1} - \log{\left (\frac{x}{x + 1} \right )} - 1\right) \left(\frac{x}{\left(x + 1\right)^{2}} - \frac{\frac{2 x}{x + 1} - 2}{x + 1} - \frac{1}{x + 1} + \frac{1}{x} \left(\frac{x}{x + 1} - 1\right)\right) - \frac{\frac{6 x}{x + 1} - 6}{\left(x + 1\right)^{2}} - \frac{4}{\left(x + 1\right)^{2}} + \frac{\frac{x}{x + 1} - 1}{x \left(x + 1\right)} + \frac{1}{x^{2}} \left(\frac{x}{x + 1} - 1\right)\right)$$