Найти производную y' = f'(x) = x-log(x+1)+2 (х минус логарифм от (х плюс 1) плюс 2) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная x-log(x+1)+2

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
x - log(x + 1) + 2
$$x - \log{\left (x + 1 \right )} + 2$$
Подробное решение
  1. дифференцируем почленно:

    1. дифференцируем почленно:

      1. В силу правила, применим: получим

      2. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. Заменим .

        2. Производная является .

        3. Затем примените цепочку правил. Умножим на :

          1. дифференцируем почленно:

            1. В силу правила, применим: получим

            2. Производная постоянной равна нулю.

            В результате:

          В результате последовательности правил:

        Таким образом, в результате:

      В результате:

    2. Производная постоянной равна нулю.

    В результате:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
      1  
1 - -----
    x + 1
$$1 - \frac{1}{x + 1}$$
Вторая производная [src]
   1    
--------
       2
(1 + x) 
$$\frac{1}{\left(x + 1\right)^{2}}$$
Третья производная [src]
  -2    
--------
       3
(1 + x) 
$$- \frac{2}{\left(x + 1\right)^{3}}$$