Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
cosh(x) /cosh(x) \
(x - 5) *|------- + log(x - 5)*sinh(x)|
\ x - 5 /
$$\left(x - 5\right)^{\cosh{\left (x \right )}} \left(\log{\left (x - 5 \right )} \sinh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{x - 5}\right)$$
/ 2 \
cosh(x) |/cosh(x) \ cosh(x) 2*sinh(x)|
(-5 + x) *||------- + log(-5 + x)*sinh(x)| + cosh(x)*log(-5 + x) - --------- + ---------|
|\ -5 + x / 2 -5 + x |
\ (-5 + x) /
$$\left(x - 5\right)^{\cosh{\left (x \right )}} \left(\left(\log{\left (x - 5 \right )} \sinh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{x - 5}\right)^{2} + \log{\left (x - 5 \right )} \cosh{\left (x \right )} + \frac{2 \sinh{\left (x \right )}}{x - 5} - \frac{\cosh{\left (x \right )}}{\left(x - 5\right)^{2}}\right)$$
/ 3 \
cosh(x) |/cosh(x) \ 3*sinh(x) 2*cosh(x) 3*cosh(x) /cosh(x) \ / cosh(x) 2*sinh(x)\|
(-5 + x) *||------- + log(-5 + x)*sinh(x)| + log(-5 + x)*sinh(x) - --------- + --------- + --------- + 3*|------- + log(-5 + x)*sinh(x)|*|cosh(x)*log(-5 + x) - --------- + ---------||
|\ -5 + x / 2 3 -5 + x \ -5 + x / | 2 -5 + x ||
\ (-5 + x) (-5 + x) \ (-5 + x) //
$$\left(x - 5\right)^{\cosh{\left (x \right )}} \left(\left(\log{\left (x - 5 \right )} \sinh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{x - 5}\right)^{3} + 3 \left(\log{\left (x - 5 \right )} \sinh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{x - 5}\right) \left(\log{\left (x - 5 \right )} \cosh{\left (x \right )} + \frac{2 \sinh{\left (x \right )}}{x - 5} - \frac{\cosh{\left (x \right )}}{\left(x - 5\right)^{2}}\right) + \log{\left (x - 5 \right )} \sinh{\left (x \right )} + \frac{3 \cosh{\left (x \right )}}{x - 5} - \frac{3 \sinh{\left (x \right )}}{\left(x - 5\right)^{2}} + \frac{2 \cosh{\left (x \right )}}{\left(x - 5\right)^{3}}\right)$$