Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
x /x*(1 + cos(x)) \
(x + sin(x)) *|-------------- + log(x + sin(x))|
\ x + sin(x) /
$$\left(x + \sin{\left (x \right )}\right)^{x} \left(\frac{x \left(\cos{\left (x \right )} + 1\right)}{x + \sin{\left (x \right )}} + \log{\left (x + \sin{\left (x \right )} \right )}\right)$$
/ 2\
| x*(1 + cos(x)) |
| 2 -2 - 2*cos(x) + x*sin(x) + ---------------|
x |/x*(1 + cos(x)) \ x + sin(x) |
(x + sin(x)) *||-------------- + log(x + sin(x))| - ------------------------------------------|
\\ x + sin(x) / x + sin(x) /
$$\left(x + \sin{\left (x \right )}\right)^{x} \left(\left(\frac{x \left(\cos{\left (x \right )} + 1\right)}{x + \sin{\left (x \right )}} + \log{\left (x + \sin{\left (x \right )} \right )}\right)^{2} - \frac{1}{x + \sin{\left (x \right )}} \left(x \sin{\left (x \right )} + \frac{x \left(\cos{\left (x \right )} + 1\right)^{2}}{x + \sin{\left (x \right )}} - 2 \cos{\left (x \right )} - 2\right)\right)$$
/ 2 3 \
| 3*(1 + cos(x)) 2*x*(1 + cos(x)) 3*x*(1 + cos(x))*sin(x) / 2\|
| 3*sin(x) + x*cos(x) + --------------- - ----------------- - ----------------------- /x*(1 + cos(x)) \ | x*(1 + cos(x)) ||
| 3 x + sin(x) 2 x + sin(x) 3*|-------------- + log(x + sin(x))|*|-2 - 2*cos(x) + x*sin(x) + ---------------||
x |/x*(1 + cos(x)) \ (x + sin(x)) \ x + sin(x) / \ x + sin(x) /|
(x + sin(x)) *||-------------- + log(x + sin(x))| - ----------------------------------------------------------------------------------- - ---------------------------------------------------------------------------------|
\\ x + sin(x) / x + sin(x) x + sin(x) /
$$\left(x + \sin{\left (x \right )}\right)^{x} \left(\left(\frac{x \left(\cos{\left (x \right )} + 1\right)}{x + \sin{\left (x \right )}} + \log{\left (x + \sin{\left (x \right )} \right )}\right)^{3} - \frac{3}{x + \sin{\left (x \right )}} \left(\frac{x \left(\cos{\left (x \right )} + 1\right)}{x + \sin{\left (x \right )}} + \log{\left (x + \sin{\left (x \right )} \right )}\right) \left(x \sin{\left (x \right )} + \frac{x \left(\cos{\left (x \right )} + 1\right)^{2}}{x + \sin{\left (x \right )}} - 2 \cos{\left (x \right )} - 2\right) - \frac{1}{x + \sin{\left (x \right )}} \left(x \cos{\left (x \right )} - \frac{3 x \left(\cos{\left (x \right )} + 1\right) \sin{\left (x \right )}}{x + \sin{\left (x \right )}} - \frac{2 x \left(\cos{\left (x \right )} + 1\right)^{3}}{\left(x + \sin{\left (x \right )}\right)^{2}} + 3 \sin{\left (x \right )} + \frac{3 \left(\cos{\left (x \right )} + 1\right)^{2}}{x + \sin{\left (x \right )}}\right)\right)$$