Найти производную y' = f'(x) = (x*(log(x)-1)+1) ((х умножить на (логарифм от (х) минус 1) плюс 1)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная (x*(log(x)-1)+1)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
x*(log(x) - 1) + 1
$$x \left(\log{\left (x \right )} - 1\right) + 1$$
Подробное решение
  1. дифференцируем почленно:

    1. Применяем правило производной умножения:

      ; найдём :

      1. В силу правила, применим: получим

      ; найдём :

      1. дифференцируем почленно:

        1. Производная является .

        2. Производная постоянной равна нулю.

        В результате:

      В результате:

    2. Производная постоянной равна нулю.

    В результате:


Ответ:

График
Первая производная [src]
log(x)
$$\log{\left (x \right )}$$
Вторая производная [src]
1
-
x
$$\frac{1}{x}$$
Третья производная [src]
-1 
---
  2
 x 
$$- \frac{1}{x^{2}}$$