Найти производную y' = f'(x) = x*log(x)-x (х умножить на логарифм от (х) минус х) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная x*log(x)-x

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
x*log(x) - x
$$x \log{\left (x \right )} - x$$
Подробное решение
  1. дифференцируем почленно:

    1. Применяем правило производной умножения:

      ; найдём :

      1. В силу правила, применим: получим

      ; найдём :

      1. Производная является .

      В результате:

    2. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

      1. В силу правила, применим: получим

      Таким образом, в результате:

    В результате:


Ответ:

График
Первая производная [src]
log(x)
$$\log{\left (x \right )}$$
Вторая производная [src]
1
-
x
$$\frac{1}{x}$$
Третья производная [src]
-1 
---
  2
 x 
$$- \frac{1}{x^{2}}$$