Применяем правило производной умножения:
dxd(f(x)g(x))=f(x)dxdg(x)+g(x)dxdf(x)
f(x)=x; найдём dxdf(x):
В силу правила, применим: x получим 1
g(x)=(x+4)3; найдём dxdg(x):
Заменим u=x+4.
В силу правила, применим: u3 получим 3u2
Затем примените цепочку правил. Умножим на dxd(x+4):
дифференцируем x+4 почленно:
В силу правила, применим: x получим 1
Производная постоянной 4 равна нулю.
В результате: 1
В результате последовательности правил:
3(x+4)2
В результате: 3x(x+4)2+(x+4)3