Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Теперь упростим:
Ответ:
/ x\ / x \
|/2\ | |/2\ |
||-| | ||-| x |
\\E/ / |\E/ /2\ /2\|
x *|---- + |-| *log(x)*log|-||
\ x \E/ \E//
$$x^{\left(\frac{2}{e}\right)^{x}} \left(\left(\frac{2}{e}\right)^{x} \log{\left (\frac{2}{e} \right )} \log{\left (x \right )} + \frac{\left(\frac{2}{e}\right)^{x}}{x}\right)$$
/ x\
|/ -1\ | x / x 2 / -1\\
\\2*e / / / -1\ | 1 / -1\ /1 / -1\\ 2/ -1\ 2*log\2*e /|
x *\2*e / *|- -- + \2*e / *|- + log(x)*log\2*e /| + log \2*e /*log(x) + ------------|
| 2 \x / x |
\ x /
$$x^{\left(\frac{2}{e}\right)^{x}} \left(\frac{2}{e}\right)^{x} \left(\left(\frac{2}{e}\right)^{x} \left(\log{\left (x \right )} \log{\left (\frac{2}{e} \right )} + \frac{1}{x}\right)^{2} + \log{\left (x \right )} \log^{2}{\left (\frac{2}{e} \right )} + \frac{2}{x} \log{\left (\frac{2}{e} \right )} - \frac{1}{x^{2}}\right)$$
/ x\
|/ -1\ | x / 2*x 3 / -1\ 2/ -1\ x / / -1\\\
\\2*e / / / -1\ |2 / -1\ /1 / -1\\ 3/ -1\ 3*log\2*e / 3*log \2*e / / -1\ /1 / -1\\ | 1 2/ -1\ 2*log\2*e /||
x *\2*e / *|-- + \2*e / *|- + log(x)*log\2*e /| + log \2*e /*log(x) - ------------ + ------------- + 3*\2*e / *|- + log(x)*log\2*e /|*|- -- + log \2*e /*log(x) + ------------||
| 3 \x / 2 x \x / | 2 x ||
\x x \ x //
$$x^{\left(\frac{2}{e}\right)^{x}} \left(\frac{2}{e}\right)^{x} \left(\left(\frac{2}{e}\right)^{2 x} \left(\log{\left (x \right )} \log{\left (\frac{2}{e} \right )} + \frac{1}{x}\right)^{3} + 3 \left(\frac{2}{e}\right)^{x} \left(\log{\left (x \right )} \log{\left (\frac{2}{e} \right )} + \frac{1}{x}\right) \left(\log{\left (x \right )} \log^{2}{\left (\frac{2}{e} \right )} + \frac{2}{x} \log{\left (\frac{2}{e} \right )} - \frac{1}{x^{2}}\right) + \log{\left (x \right )} \log^{3}{\left (\frac{2}{e} \right )} + \frac{3}{x} \log^{2}{\left (\frac{2}{e} \right )} - \frac{3}{x^{2}} \log{\left (\frac{2}{e} \right )} + \frac{2}{x^{3}}\right)$$