Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ x\ / x \
\(2*E) / |(2*E) x |
x *|------ + (2*E) *log(x)*log(2*E)|
\ x /
$$x^{\left(2 e\right)^{x}} \left(\left(2 e\right)^{x} \log{\left (2 e \right )} \log{\left (x \right )} + \frac{\left(2 e\right)^{x}}{x}\right)$$
/ x\ / 2 \
\(2*E) / x | 1 x /1 \ 2 2*log(2*E)|
x *(2*E) *|- -- + (2*E) *|- + log(x)*log(2*E)| + log (2*E)*log(x) + ----------|
| 2 \x / x |
\ x /
$$x^{\left(2 e\right)^{x}} \left(2 e\right)^{x} \left(\left(2 e\right)^{x} \left(\log{\left (2 e \right )} \log{\left (x \right )} + \frac{1}{x}\right)^{2} + \log^{2}{\left (2 e \right )} \log{\left (x \right )} + \frac{2}{x} \log{\left (2 e \right )} - \frac{1}{x^{2}}\right)$$
/ x\ / 3 2 \
\(2*E) / x |2 2*x /1 \ 3 3*log(2*E) 3*log (2*E) x /1 \ / 1 2 2*log(2*E)\|
x *(2*E) *|-- + (2*E) *|- + log(x)*log(2*E)| + log (2*E)*log(x) - ---------- + ----------- + 3*(2*E) *|- + log(x)*log(2*E)|*|- -- + log (2*E)*log(x) + ----------||
| 3 \x / 2 x \x / | 2 x ||
\x x \ x //
$$x^{\left(2 e\right)^{x}} \left(2 e\right)^{x} \left(\left(2 e\right)^{2 x} \left(\log{\left (2 e \right )} \log{\left (x \right )} + \frac{1}{x}\right)^{3} + 3 \left(2 e\right)^{x} \left(\log{\left (2 e \right )} \log{\left (x \right )} + \frac{1}{x}\right) \left(\log^{2}{\left (2 e \right )} \log{\left (x \right )} + \frac{2}{x} \log{\left (2 e \right )} - \frac{1}{x^{2}}\right) + \log^{3}{\left (2 e \right )} \log{\left (x \right )} + \frac{3}{x} \log^{2}{\left (2 e \right )} - \frac{3}{x^{2}} \log{\left (2 e \right )} + \frac{2}{x^{3}}\right)$$