/ x\ / 2 \
x \2 / | 1 x /1 \ 2 2*log(2)|
2 *x *|- -- + 2 *|- + log(2)*log(x)| + log (2)*log(x) + --------|
| 2 \x / x |
\ x /
$$2^{x} x^{2^{x}} \left(2^{x} \left(\log{\left (2 \right )} \log{\left (x \right )} + \frac{1}{x}\right)^{2} + \log^{2}{\left (2 \right )} \log{\left (x \right )} + \frac{2}{x} \log{\left (2 \right )} - \frac{1}{x^{2}}\right)$$
/ x\ / 3 2 \
x \2 / |2 2*x /1 \ 3 3*log(2) 3*log (2) x /1 \ / 1 2 2*log(2)\|
2 *x *|-- + 2 *|- + log(2)*log(x)| + log (2)*log(x) - -------- + --------- + 3*2 *|- + log(2)*log(x)|*|- -- + log (2)*log(x) + --------||
| 3 \x / 2 x \x / | 2 x ||
\x x \ x //
$$2^{x} x^{2^{x}} \left(2^{2 x} \left(\log{\left (2 \right )} \log{\left (x \right )} + \frac{1}{x}\right)^{3} + 3 \cdot 2^{x} \left(\log{\left (2 \right )} \log{\left (x \right )} + \frac{1}{x}\right) \left(\log^{2}{\left (2 \right )} \log{\left (x \right )} + \frac{2}{x} \log{\left (2 \right )} - \frac{1}{x^{2}}\right) + \log^{3}{\left (2 \right )} \log{\left (x \right )} + \frac{3}{x} \log^{2}{\left (2 \right )} - \frac{3}{x^{2}} \log{\left (2 \right )} + \frac{2}{x^{3}}\right)$$