Найти производную y' = f'(x) = x^(2^(x)) (х в степени (2 в степени (х))) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная x^(2^(x))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 / x\
 \2 /
x    
$$x^{2^{x}}$$
Подробное решение
  1. Не могу найти шаги в поиске этой производной.

    Но производная


Ответ:

Первая производная [src]
 / x\ / x                   \
 \2 / |2     x              |
x    *|-- + 2 *log(2)*log(x)|
      \x                    /
$$x^{2^{x}} \left(2^{x} \log{\left (2 \right )} \log{\left (x \right )} + \frac{2^{x}}{x}\right)$$
Вторая производная [src]
    / x\ /                             2                            \
 x  \2 / |  1     x /1                \       2             2*log(2)|
2 *x    *|- -- + 2 *|- + log(2)*log(x)|  + log (2)*log(x) + --------|
         |   2      \x                /                        x    |
         \  x                                                       /
$$2^{x} x^{2^{x}} \left(2^{x} \left(\log{\left (2 \right )} \log{\left (x \right )} + \frac{1}{x}\right)^{2} + \log^{2}{\left (2 \right )} \log{\left (x \right )} + \frac{2}{x} \log{\left (2 \right )} - \frac{1}{x^{2}}\right)$$
Третья производная [src]
    / x\ /                             3                                    2                                                                 \
 x  \2 / |2     2*x /1                \       3             3*log(2)   3*log (2)      x /1                \ /  1       2             2*log(2)\|
2 *x    *|-- + 2   *|- + log(2)*log(x)|  + log (2)*log(x) - -------- + --------- + 3*2 *|- + log(2)*log(x)|*|- -- + log (2)*log(x) + --------||
         | 3        \x                /                         2          x            \x                / |   2                       x    ||
         \x                                                    x                                            \  x                             //
$$2^{x} x^{2^{x}} \left(2^{2 x} \left(\log{\left (2 \right )} \log{\left (x \right )} + \frac{1}{x}\right)^{3} + 3 \cdot 2^{x} \left(\log{\left (2 \right )} \log{\left (x \right )} + \frac{1}{x}\right) \left(\log^{2}{\left (2 \right )} \log{\left (x \right )} + \frac{2}{x} \log{\left (2 \right )} - \frac{1}{x^{2}}\right) + \log^{3}{\left (2 \right )} \log{\left (x \right )} + \frac{3}{x} \log^{2}{\left (2 \right )} - \frac{3}{x^{2}} \log{\left (2 \right )} + \frac{2}{x^{3}}\right)$$