Найти производную y' = f'(x) = x^e^x (х в степени e в степени х) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная x^e^x

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 / x\
 \E /
x    
$$x^{e^{x}}$$
Подробное решение
  1. Не могу найти шаги в поиске этой производной.

    Но производная

  2. Теперь упростим:


Ответ:

Первая производная [src]
 / x\ / x            \
 \E / |e     x       |
x    *|-- + e *log(x)|
      \x             /
$$x^{e^{x}} \left(e^{x} \log{\left (x \right )} + \frac{e^{x}}{x}\right)$$
Вторая производная [src]
 / x\ /                       2            \   
 \e / |  1    2   /1         \   x         |  x
x    *|- -- + - + |- + log(x)| *e  + log(x)|*e 
      |   2   x   \x         /             |   
      \  x                                 /   
$$x^{e^{x}} \left(\left(\log{\left (x \right )} + \frac{1}{x}\right)^{2} e^{x} + \log{\left (x \right )} + \frac{2}{x} - \frac{1}{x^{2}}\right) e^{x}$$
Третья производная [src]
 / x\ /                            3                                                      \   
 \e / |  3    2    3   /1         \   2*x     /1         \ /  1    2         \  x         |  x
x    *|- -- + -- + - + |- + log(x)| *e    + 3*|- + log(x)|*|- -- + - + log(x)|*e  + log(x)|*e 
      |   2    3   x   \x         /           \x         / |   2   x         |            |   
      \  x    x                                            \  x              /            /   
$$x^{e^{x}} \left(\left(\log{\left (x \right )} + \frac{1}{x}\right)^{3} e^{2 x} + 3 \left(\log{\left (x \right )} + \frac{1}{x}\right) \left(\log{\left (x \right )} + \frac{2}{x} - \frac{1}{x^{2}}\right) e^{x} + \log{\left (x \right )} + \frac{3}{x} - \frac{3}{x^{2}} + \frac{2}{x^{3}}\right) e^{x}$$