log(x) - 1 x
Не могу найти шаги в поиске этой производной.
Но производная
(log(x)−1)log(x)−1(log(log(x)−1)+1)\left(\log{\left (x \right )} - 1\right)^{\log{\left (x \right )} - 1} \left(\log{\left (\log{\left (x \right )} - 1 \right )} + 1\right)(log(x)−1)log(x)−1(log(log(x)−1)+1)
Теперь упростим:
Ответ:
log(x) - 1 /log(x) - 1 log(x)\ x *|---------- + ------| \ x x /
-1 + log(x) / 2 \ x *\3 + (-1 + 2*log(x)) - 2*log(x)/ ---------------------------------------------- 2 x
-1 + log(x) / 3 \ x *\-8 + (-1 + 2*log(x)) + 4*log(x) - 3*(-1 + 2*log(x))*(-3 + 2*log(x))/ ----------------------------------------------------------------------------------- 3 x