Подробное решение
Применяем правило производной умножения:
; найдём :
В силу правила, применим: получим
; найдём :
Производная синуса есть косинус:
В результате:
Теперь упростим:
Ответ:
7 6
x *cos(x) + 7*x *sin(x)
$$x^{7} \cos{\left (x \right )} + 7 x^{6} \sin{\left (x \right )}$$
5 / 2 \
x *\42*sin(x) - x *sin(x) + 14*x*cos(x)/
$$x^{5} \left(- x^{2} \sin{\left (x \right )} + 14 x \cos{\left (x \right )} + 42 \sin{\left (x \right )}\right)$$
4 / 3 2 \
x *\210*sin(x) - x *cos(x) - 21*x *sin(x) + 126*x*cos(x)/
$$x^{4} \left(- x^{3} \cos{\left (x \right )} - 21 x^{2} \sin{\left (x \right )} + 126 x \cos{\left (x \right )} + 210 \sin{\left (x \right )}\right)$$