Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
sin(x) /sin(x) \
x *|------ + cos(x)*log(x)|
\ x /
$$x^{\sin{\left (x \right )}} \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right)$$
/ 2 \
sin(x) |/sin(x) \ sin(x) 2*cos(x)|
x *||------ + cos(x)*log(x)| - ------ - log(x)*sin(x) + --------|
|\ x / 2 x |
\ x /
$$x^{\sin{\left (x \right )}} \left(\left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right)^{2} - \log{\left (x \right )} \sin{\left (x \right )} + \frac{2}{x} \cos{\left (x \right )} - \frac{1}{x^{2}} \sin{\left (x \right )}\right)$$
/ 3 \
sin(x) |/sin(x) \ 3*sin(x) 3*cos(x) /sin(x) \ /sin(x) 2*cos(x)\ 2*sin(x)|
x *||------ + cos(x)*log(x)| - cos(x)*log(x) - -------- - -------- - 3*|------ + cos(x)*log(x)|*|------ + log(x)*sin(x) - --------| + --------|
|\ x / x 2 \ x / | 2 x | 3 |
\ x \ x / x /
$$x^{\sin{\left (x \right )}} \left(\left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right)^{3} - 3 \left(\log{\left (x \right )} \cos{\left (x \right )} + \frac{1}{x} \sin{\left (x \right )}\right) \left(\log{\left (x \right )} \sin{\left (x \right )} - \frac{2}{x} \cos{\left (x \right )} + \frac{1}{x^{2}} \sin{\left (x \right )}\right) - \log{\left (x \right )} \cos{\left (x \right )} - \frac{3}{x} \sin{\left (x \right )} - \frac{3}{x^{2}} \cos{\left (x \right )} + \frac{2}{x^{3}} \sin{\left (x \right )}\right)$$